ACADEMY

STUDY GUIDE

MATHEMATICS SL

IB Academy Mathematics Study Guide

Available on learn.ib.academy
Authors: Laurence Gibbons, Robert van den Heuvel Contributing Authors: Alex Barancova, Laurence Gibbons

Design
 Rational

This work may be shared digitally and in printed form, but it may not be changed and then redistributed in any form.

Copyright ${ }^{\oplus}$ 2018, IB Academy
Version: MatSL.1.10.190315

This work is published under the Creative Commons BY-NC-ND 4.0 International License. To view a copy of this license, visit creativecommons.org/licenses/by-nc-nd/4.0

This work may not used for commercial purposes other than by IB Academy, or parties directly licenced by IB Academy. If you acquired this guide by paying for it, or if you have received this guide as part of a paid service or product, directly or indirectly, we kindly ask that you contact us immediately.

Laan van Puntenburg 2a
3511ER, Utrecht
The Netherlands
ib.academy
info@ib.academy
+31 (0) 304300430

INTRODUCTION

Welcome to the IB.Academy Study Guide for IB Mathematics Standard Level.
We are proud to present our study guides and hope that you will find them helpful. They are the result of a collaborative undertaking between our tutors, students and teachers from schools across the globe. Our mission is to create the most simple yet comprehensive guides accessible to IB students and teachers worldwide. We are firm believers in the open education movement, which advocates for transparency and accessibility of academic material. As a result, we embarked on this journey to create these study guides that will be continuously reviewed and improved. Should you have any comments, feel free to contact us.

For this Mathematics SL guide, we incorporated everything you need to know for your final exam. The guide is broken down into manageable chapters based on the syllabus topics. Each chapter begins with a 'cheat sheets' that summarises the content. This will prove especially useful when you work on exercises. The chapter is then further divided into subtopics, featuring definitions; our step by step approach to common exam questions; and 'how to' calculator guides.

For more information and details on our revision courses, be sure to visit our website at ib.academy. We hope that you will enjoy our guides and best of luck with your studies.

IB.Academy Team

TABLE OF CONTENTS

1. Prior knowledge 7
2. Algebra 11
I 3. Functions 21
3. Vectors 29
 5. Trigonometry and circular 35 functions
4. Differentiation 45
5. Integration 57
6. Probability 65
7. Statistics 77

PRIOR KNOWLEDGE

Before you start make sure you have a firm grasp of the following. Many marks are lost through errors in these fundamentals.

1.1 Number

Numbers can be grouped in to a number of sets. From the diagram you see that all rational numbers are also real numbers; i.e. \mathbb{Q} is a subset of \mathbb{R}.

Positive integers	$\mathbb{Z}^{+}=\{1,2,3, \ldots\}$
Positive integers and zero	$\mathbb{N}=\{0,1,2,3, \ldots\}$
Integers	$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
Rational numbers	$\mathbb{Q}=$ any number that can be written as the ratio $\frac{p}{q}$
	of any two integers, where $q \neq 0$

1.2 Signs

+ and - signs describe positive and negative numbers. Remember they work the opposite way with negative intergers. In maths two wrongs do make a right.

$$
1--1=1+1=2 \quad-1 \times-1=1
$$

1.3 BIDMAS

A handy acronymn for remembering the order in which to calculate equations:

Therefore in the following equation

$$
\begin{aligned}
& 4^{2}+5 \times \frac{6}{4} \times(9-1)= \\
& \mathrm{B} \longrightarrow \quad \\
& \mathrm{I} \quad 4^{2}+5 \times \frac{6}{4} \times(8)= \\
& \mathrm{D} / \mathrm{M}=16+5 \times \frac{6}{4} \times 8= \\
&=16+\frac{30}{4} \times 8= \\
& \mathrm{A} / \mathrm{S} \longrightarrow 16+7.5 \times 8= \\
&=16+60= \\
&=76
\end{aligned}
$$

1.4 Solving simulatenous equations

If we have two unknows, for example x and y, and two equations, then we can solve for x and y simulateously.

$$
\begin{cases}(1) & y=3 x+1 \\ (2) & 2 y=x-1\end{cases}
$$

There are 3 methods to solve simultaneous equations.

Elimination

Multiply an equation and then subtract it from the other in order to eliminate one of the unknows.

$$
\begin{aligned}
3 \times(2) \Rightarrow \quad(3) \quad 6 y & =3 x-3 \\
(3)-(1) \Rightarrow \quad 6 y-y & =3 x-3 x-3-1 \\
5 y & =-4 \\
y & =-\frac{4}{5}
\end{aligned}
$$

Put y in (1) or (2) and solve for x

$$
\begin{aligned}
-\frac{4}{5} & =3 x+1 \\
3 x & =-\frac{9}{5} \\
x & =-\frac{9}{15}=-\frac{3}{5}
\end{aligned}
$$

Substitution

Rearange and then substitute one in to another.

Substitute (1) into (2)

$$
\begin{aligned}
2(3 x+1) & =x-1 \\
6 x+2 & =x-1 \\
5 x & =-3 \\
x & =-\frac{3}{5}
\end{aligned}
$$

Put x in (1) or (2) and solve for x

$$
\begin{aligned}
& y=3\left(-\frac{3}{5}\right)+1 \\
& y=-\frac{4}{5}
\end{aligned}
$$

Graph

Graph both lines on your gdc. Where they intersect will be the solution to the equation.

Note that this method is also great when you have to solve more complex equations.

1.5 Geometry

These are given in the data booklet

Area of parallelogram	$A=\mathrm{b} \times \mathrm{h}$
Area of a triangle	$A=\frac{1}{2}(\mathrm{~b} \times \mathrm{h})$
Area of a trapezium	$A=\frac{1}{2}(\mathrm{a}+\mathrm{b}) \mathrm{h}$
Area of a circle	$A=\pi \mathrm{r}^{2}$
Circumference of a circle	$C=2 \pi \mathrm{r}$
Volume of a pyramid	$V=\frac{1}{3}($ area base \times vertical height $)$
Volume of a cuboid (rectangular prism)	$V=1 \times \mathrm{w} \times \mathrm{h}$
Volume of a cylinder	$V=\pi \mathrm{r}^{2} \mathrm{~h}$
Area of the curved surface of a cylinder	$A=2 \pi \mathrm{rh}$
Volume of a sphere	$V=\frac{4}{3} \pi \mathrm{r}^{3}$
Volume of a cone	$V=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$

ALGEBRA

Table of contents $\&$ cheatsheet

2.1. Sequences

Arithmetic: +/- common difference

$$
\begin{aligned}
& u_{n}=n^{\text {th }} \text { term }=u_{1}+(n-1) d \\
& S_{n}=\text { sum of } n \text { terms }=\frac{n}{2}\left(2 u_{1}+(n-1) d\right)
\end{aligned}
$$

with $u_{1}=a=1^{\text {st }}$ term, $d=$ common difference.

Geometric: \times / \div common ratio

$$
\begin{aligned}
& u_{n}=n^{\text {th }} \text { term }=u_{1} \cdot r^{n-1} \\
& S_{n}=\text { sum of } n \text { terms }=\frac{u_{1}\left(1-r^{n}\right)}{(1-r)} \\
& S_{\infty}=\text { sum to infinity }=\frac{u_{1}}{1-r}, \text { when }-1<r<1
\end{aligned}
$$

with $u_{1}=a=1^{\text {st }}$ term, $r=$ common ratio.

Sigma notation

A shorthand to show the sum of a number of terms in a sequence.

e.g.
$\sum_{n=1}^{10} 3 n-1=\underbrace{(3 \cdot 1)-1}_{n=1}+\underbrace{(3 \cdot 2)-1}_{n=2}+\cdots+\underbrace{(3 \cdot 10)-1}_{n=10}=155$

2.2. Exponents and logarithms

15

Exponents

$$
\begin{aligned}
x^{1} & =x & x^{0} & =1 \\
x^{m} \cdot x^{n} & =x^{m+n} & \frac{x^{m}}{x^{n}} & =x^{m-n} \\
\left(x^{m}\right)^{n} & =x^{m \cdot n} & (x \cdot y)^{n} & =x^{n} \cdot y^{n} \\
x^{-1} & =\frac{1}{x} & x^{-n} & =\frac{1}{x^{n}} \\
x^{\frac{1}{2}} & =\sqrt{x} & \sqrt{x} \cdot \sqrt{x} & =x \\
\sqrt{x y} & =\sqrt{x} \cdot \sqrt{y} & x^{\frac{1}{n}} & =\sqrt[n]{x} \\
x^{\frac{m}{n}} & =\sqrt[n]{x^{m}} & x^{-\frac{m}{n}} & =\frac{1}{\sqrt[n]{x^{m}}}
\end{aligned}
$$

Logarithms

$$
\log _{a} a^{x}=x \quad a^{\log _{a} b}=b
$$

Let $a^{x}=b$, isolate x from the exponent: $\log _{a} a^{x}=x=\log _{a} b$ Let $\log _{a} x=b$, isolate x from the logarithm: $a^{\log _{a} x}=x=a^{b}$

Laws of logarithms

I:

II:
III:
IV:

$$
n \log _{c} a=\log _{c}\left(a^{n}\right)
$$

$$
\log _{b} a=\frac{\log _{c} a}{\log _{c} b}
$$

2.3. Binomial Expansion

Find the coefficient using either pascals triangle
In a expansion of a binomial in the form $(a+b)^{n}$. Each term can be described as $\binom{n}{r} a^{n-r} b^{r}$, where $\binom{n}{r}$ is the coefficient.
The full expansion can be written thus

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}
$$

$n=0$
$n=1$
$n=2$
$n=3$
$n=4$
$n=5$

Or the $n \mathrm{Cr}$ function on your calculator

2.1 Sequences

2.1.1 Arithmetic sequence

Arithmetic sequence the next term is the previous number + the common difference (d).
e.g. $2,4,6,8,10, \ldots \quad d=+2$ and $2,-3,-8,-13, \ldots \quad d=-5$

To find the common difference d, subtract two consecutive terms of an arithmetic sequence from the term that follows it, i.e. $u_{(n+1)}-u_{n}$.

DB 1.1 Use the following equations to calculate the $n^{\text {th }}$ term or the sum of n terms.

$$
u_{n}=u_{1}+(n-1) d \quad S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right)
$$

with

$$
u_{1}=a=1^{\text {st }} \text { term } \quad d=\text { common difference }
$$

Often the IB requires you to first find the $1^{\text {st }}$ term and/or common difference.

Finding the first term u_{1} and the common difference d from other

 terms.In an arithmetic sequence $u_{10}=37$ and $u_{22}=1$. Find the common difference and the first term.

1. Put numbers in to $n^{\text {th }}$ term formula

$$
\begin{aligned}
37 & =u_{1}+9 d \\
1 & =u_{1}+21 d
\end{aligned}
$$

2. Equate formulas to find d

$$
\begin{aligned}
21 d-1 & =9 d-37 \\
12 d & =-36 \\
d & =-3
\end{aligned}
$$

3. Use d to find u_{1}

$$
\begin{aligned}
1-21 \cdot(-3) & =u_{1} \\
u_{1} & =64
\end{aligned}
$$

2.1.2 Geometric sequence

Geometric sequence the next term is the previous number multiplied by the common ratio (r).

To find the common ratio, divide any term of an arithmetic sequence by the term that precedes it, i.e. $\frac{\text { second term }\left(u_{2}\right)}{\text { first term }\left(u_{1}\right)}$ e.g. $\quad 2,4,8,16,32, \ldots \quad r=2$
and $25,5,1,0.2, \ldots \quad r=\frac{1}{5}$

Use the following equations to calculate the $n^{\text {th }}$ term, the sum of n terms or the sum to infinity when $-1<r<1$.

$$
\begin{aligned}
u_{n} & =n^{\text {th }} \text { term } & S_{n} & =\operatorname{sum} \text { of } n \text { terms } \\
& =u_{1} \cdot r^{n-1} & & =\frac{u_{1}\left(1-r^{n}\right)}{(1-r)}
\end{aligned}
$$

again with

$$
u_{1}=a=1^{\text {st }} \text { term } \quad r=\text { common ratio }
$$

Similar to questions on Arithmetic sequences, you are often required to find the $1^{\text {st }}$ term and/or common ratio first.

2.1.3 Sigma notation

Sigma notation is a way to represent the summation of any sequence - this means that it can be used for both arithmetic or geometric series. The notation shows you the formula that generates terms of a sequence and the upper and lower limits of the terms that you want to add up in this sequence.

$$
\begin{aligned}
& \sqrt{\downarrow} \text { Last value of } n \\
& \sum_{n=1}^{10} 3 n-1 \longleftarrow \text { Formula } \\
& \text { e.g. } \sum_{n=1}^{10} 3 n-1=\underbrace{(3 \cdot 1)-1}_{n=1}+\underbrace{(3 \cdot 2)-1}_{n=2}+\underbrace{(3 \cdot 3)-1}_{n=3}+\cdots+\underbrace{(3 \cdot 10)-1}_{n=10}=155
\end{aligned}
$$

Finding the first term u_{1} and common ratio r from other terms.
$\sum_{1}^{5}($ Geometric series $)=3798, \sum_{1}^{\infty}($ Geometric series $)=4374$.
Find $\sum_{1}^{7}($ Geometric series $)=$?

1. Interpret the question

The sum of the first 5 terms of a geometric sequence is 3798 and the sum to infinity is 4374 . Find the sum of the first 7 terms
2. Use formula for sum of n terms $\quad 3798=u_{1} \frac{1-r^{5}}{1-r}$
3. Use formula for sum to infinity

$$
4374=\frac{u_{1}}{1-r}
$$

4. Rearrange 3. for $u_{1} \quad 4374(1-r)=u_{1}$
5. Substitute in to 2.

$$
3798=\frac{4374(1-r)\left(1-r^{5}\right)}{1-r}
$$

6. Solve for r

$$
3798=4374\left(1-r^{5}\right)
$$

$$
\frac{3798}{4374}=1-r^{5}
$$

$$
r^{5}=1-\frac{211}{243}
$$

$$
\sqrt[5]{r}=\sqrt[5]{\frac{32}{243}}
$$

$$
r=\frac{2}{3}
$$

7. Use r to find u_{1}
$u_{1}=4374\left(1-\frac{2}{3}\right)$
$u_{1}=1458$
8. Find sum of first 7 terms

$$
1458 \frac{1-\left(\frac{2}{3}\right)^{7}}{1-\frac{2}{3}}=4370
$$

2.2 Exponents and logarithms

2.2.1 Laws of exponents

Exponents always follow certain rules. If you are multiplying or dividing, use the following rules to determine what happens with the powers.

$$
\begin{aligned}
x^{1} & =x & 6^{1} & =6 \\
x^{0} & =1 & 7^{0} & =1 \\
x^{m} \cdot x^{n} & =x^{m+n} & 4^{5} \cdot 4^{6} & =4^{11} \\
\frac{x^{m}}{x^{n}} & =x^{m-n} & \frac{3^{5}}{3^{4}} & =3^{5-4}=3^{1}=3 \\
\left(x^{m}\right)^{n} & =x^{m \cdot n} & \left(10^{5}\right)^{2} & =10^{10} \\
(x \cdot y)^{n} & =x^{n} \cdot y^{n} & (2 \cdot 4)^{3} & =2^{3} \cdot 4^{3} \quad \text { and }(3 x)^{4}=3^{4} x^{4} \\
x^{-1} & =\frac{1}{x} & 5^{-1} & =\frac{1}{5} \quad \text { and } \quad\left(\frac{3}{4}\right)^{-1}=\frac{4}{3} \\
x^{-n} & =\frac{1}{x^{n}} & 3^{-5} & =\frac{1}{3^{5}}=\frac{1}{243}
\end{aligned}
$$

2.2.2 Fractional exponents

When doing mathematical operations $(+,-, \times$ or \div) with fractions in the exponent you will need the following rules. These are often helpful when writing your answers in simplest terms.

$$
\begin{aligned}
x^{\frac{1}{2}} & =\sqrt{x} \\
\sqrt{x} \cdot \sqrt{x} & =x \\
\sqrt{x y} & =\sqrt{x} \cdot \sqrt{y} \\
x^{\frac{1}{n}} & =\sqrt[n]{x} \\
x^{\frac{m}{n}} & =\sqrt[n]{x^{m}}
\end{aligned}
$$

$$
2^{\frac{1}{2}}=\sqrt{2}
$$

$$
\sqrt{3} \cdot \sqrt{3}=3
$$

$$
\sqrt{12}=\sqrt{4 \cdot 3}=\sqrt{4} \cdot \sqrt{3}=2 \cdot \sqrt{3}
$$

$$
5^{\frac{1}{3}}=\sqrt[3]{5}
$$

$$
3^{-\frac{2}{5}}=\frac{1}{\sqrt[5]{3^{2}}}
$$

2.2.3 Laws of logarithms

Logarithms are the inverse mathematical operation of exponents, like division is the inverse mathematical operation of multiplication. The logarithm is often used to find the variable in an exponent.

$$
a^{x}=b \quad \Leftrightarrow \quad x=\log _{a} b
$$

Since $\log _{a} a^{x}=x$, so that $x=\log _{a} b$.
This formula shows that the variable x in the power of the exponent becomes the subject of your log equation, while the number a becomes the base of your logarithm.

Below are the rules that you will need to use when performing calculations with logarithms and when simplifying them. The sets of equations on the left and right are the same; on the right we show the notation that the DB uses while the equations on the left are easier to understand.

Laws of logarithms and change of base

I: $\quad \log A+\log B=\log (A \cdot B)$
$\log _{c} a+\log _{c} b=\log _{c}(a b)$
II:

$$
\log A-\log B=\log \left(\frac{A}{B}\right)
$$

$$
\log _{c} a-\log _{c} b=\log _{c}\left(\frac{a}{b}\right)
$$

III: $\quad n \log A=\log \left(A^{n}\right)$
$n \log _{c} a=\log _{c}\left(a^{n}\right)$
IV:
$\log _{B} A=\frac{\log A}{\log B}$
$\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$

Note

- $x=\log _{a} a=1$
- With the $4^{\text {th }}$ rule you can change the base of a log.
- $\log _{a} 0=x$ is always undefined (because $a^{x} \neq 0$).
- When you see a \log with no base, it is referring to a logarithm with a base of 10 (e.g. $\log 13=\log _{10} 13$).

Solve x in exponents using logs.

Solve $2^{x}=13$.

1. Take the \log on both sides $\log 2^{x}=\log 13$
2. Use rule III to take x outside $x \log 2=\log 13$
3. Solve $x=\frac{\log 13}{\log 2}$

Expressing logs in terms of other logs

For the following three examples use that $p=\log _{d} 5$ and $q=\log _{\alpha} 2$.

1. Express $\log _{a} 10$ in terms of p and $q: \quad \log _{a}(5 \times 2)=\log _{a} 5+\log _{a} 2=p+q$
2. Express $\log _{a} 8$ in terms of p and $q: \quad \log _{a}\left(2^{3}\right)=3 \log _{a} 2=3 q$
3. Express $\log _{a} 2.5$ in terms of p and $q: \log _{a}\left(\frac{5}{2}\right)=\log _{a} 5-\log _{a} 2=p-q$

But what about \ln and e ? These work exactly the same; e is $j u s t$ the irrational number $2.71828 \ldots$ (infinitely too long to write out) and \ln is just $\log _{\mathrm{g}}$.

$$
\begin{aligned}
\ln a+\ln b & =\ln (a \cdot b) \\
\ln a-\ln b & =\ln \left(\frac{a}{b}\right) \\
n \ln a & =\ln a^{n} \\
\ln \mathrm{e} & =1 \\
\mathrm{e}^{\ln a} & =a
\end{aligned}
$$

2.3 Binomial expansion

Binomial an expression $(a+b)^{n}$ which is the sum of two terms raised to the power n.

$$
\text { e.g. }(x+3)^{2}
$$

Binomial expansion $(a+b)^{n}$ is expanded into a sum of terms

$$
\text { e.g. } x^{2}+6 x+9
$$

Binomial expansions get increasingly complex as the power increases:

binomial binomial expansion

$$
\begin{aligned}
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

The general formula for each term is: $\binom{n}{r} a^{n-r} b^{r}$.
In order to find the full binomial expansion of a binomial, you have to determine the coefficient $\binom{n}{r}$ and the powers for each term, $n-r$ and r for a and b respectively, as shown by the binomial expansion formula.

DB 1.3

Binomial expansion formula

The powers decrease by 1 for a and increase by 1 for b for each subsequent term.
The sum of the powers of each term will always $=n$.
There are two ways to find the coefficients: with Pascal's triangle or the binomial coefficient function (nCr).

Pascal's triangle

Pascal's triangle is an easy way to find all the coefficients for your binomial expansion. It is particularly useful in cases where:

1. the power is not too high (because you have to write it out manually);
2. if you have to find all the terms in a binomial expansion.

Binomial coefficient functions

In the $1^{\text {st }}$ term of the expansion $r=0$, in the $2^{\text {nd }}$ term $r=1, \ldots$

$$
\begin{aligned}
(a+b)^{n} & =a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{r} a^{n-r} b^{r}+\cdots+b^{n} \\
& =\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots
\end{aligned}
$$

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Use the nCr function on your calculator!

How to expand binomial expansions.

Find the expansion of $\left(x-\frac{2}{x}\right)^{5}$

1. Use the binomial expansion formula
$a=x$

$$
\begin{aligned}
& (x)^{5}+(5 C 1)(x)^{4}\left(-\frac{2}{x}\right)+ \\
& (5 C 2)(x)^{3}\left(-\frac{2}{x}\right)^{2}+(5 C 3)(x)^{2}\left(-\frac{2}{x}\right)^{3}+ \\
& (5 C 4)(x)\left(-\frac{2}{x}\right)^{4}+(5 C 5)\left(-\frac{2}{x}\right)^{5}
\end{aligned}
$$

$b=-\frac{2}{x}$
2. Find coefficients
using Pascal's triangle for low powers and
nCr calculator for high functions

$$
\begin{aligned}
& \text { Row 3: } 1 \begin{array}{llll}
1 & 3 & 3 & 1
\end{array} \\
& \\
& (5 C 1)=5 \quad(5 C 3)=10 \quad(5 C 5)=1
\end{aligned}
$$

3. Put them together

$$
\begin{aligned}
& x^{5}+5 x^{4}\left(-\frac{2}{x}\right)^{1}+10 x^{3}\left(-\frac{2}{x}\right)^{2}+ \\
& 10 x^{2}\left(-\frac{2}{x}\right)^{3}+5 x\left(-\frac{2}{x}\right)^{4}+\left(-\frac{2}{x}\right)^{5}
\end{aligned}
$$

4. Simplify
using laws of exponents

$$
x^{5}-10 x^{3}+20 x-\frac{80}{x}+\frac{80}{x^{3}}-\frac{32}{x^{5}}
$$

Finding a specific term in a binomial expansion.

Find the coefficient of x^{5} in the expansion $(2 x-5)^{8}$

1. One term is asked, usually of a high power then use binomial expansion

$$
(a+b)^{n}=\cdots+\binom{n}{r} a^{n-r} b^{r}+\ldots
$$

formula
2. Determine $r \quad$ Since $a=2 x$, to find x^{5} we need a^{5}. $a^{5}=a^{n-r}=a^{8-r}$, so that $r=3$
3. Plug r into the general formula $\binom{n}{r} a^{n-r} b^{r}=\binom{8}{3} a^{8-3} b^{3}=\binom{8}{3} a^{5} b^{3}$
4. Replace a and b

$$
\binom{8}{3}(2 x)^{5}(-5)^{3}
$$

5.

Use nCr to calculate the value for $\binom{n}{r} \quad\binom{8}{3}=8 C 3=56$

Press
5: Probability
3: Combinations

Insert the values for n and r separated by a comma
6. Substitute and calculate the value $56 \times 2^{5}\left(x^{5}\right) \times(-5)^{3}=-224000\left(x^{5}\right)$

The IB use three different terms for these types of question which will effect the answer you should give:

Coefficient: the number before the x value;
Term: the number and the x value;
Constant term: the number for which there is no x value $\left(x^{0}\right)$.

Table of contents \& cheatsheet

Definitions

Function a mathematical relationship where each input has a single output. It is often written as $f(x)$ where x is the input Domain all possible x values, the input. (the domain of investigation)
Range possible y values, the output. (the range of outcomes)
Coordinates uniquely determines the position of a point, given by (x, y)

3.1. Types of functions

Linear functions $\quad y=m x+c$
m is the gradient, c is the y intercept.
Midpoint: $\quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Gradient: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Parallel lines: $m_{1}=m_{2}$ (same gradients)
Perpendicular lines: $m_{1} m_{2}=-1$

Quadratic functions $y=a x^{2}+b x+c=0$
Axis of symmetry: x-coordinate of the vertex: $x=\frac{-b}{2 a}$
Factorized form: $y=(x+p)(x+q)$

If $a=1$ use the factorization method $(x+p) \cdot(x+q)$
If $a \neq 1$ use the quadratic formula
When asked excplicity complete the square
Vertex form: $y=a(x-h)^{2}+k$
Vertex: (h, k)

Exponential

$$
f(x)=a^{x}+c
$$

Logarithmic

$$
g(x)=\log _{a}(x+b)
$$

3.2. Rearranging functions

Inverse function, $f^{-1}(x)$ reflection of $f(x)$ in $y=x$.

Composite function, $(f \circ g)(x)$ is the combined function f of g of x.
When $f(x)$ and $g(x)$ are given, replace x in $f(x)$ by $g(x)$.

Transforming functions

Change to $f(x)$	Effect
$f(x)+a$	Move graph a units upwards
$f(x+a)$	Move graph a units to the left
$a \cdot f(x)$	Vertical stretch by factor a
$f(a \cdot x)$	Horizontal stretch by factor $\frac{1}{a}$
$-f(x)$	Reflection in x-axis
$f(-x)$	Reflection in y-axis

3.1 Types of functions

Functions are mathematical relationships where each input has a single output. You have probably been doing functions since you began learning maths, but they may have looked like this:

Algebraically this is: $f(x)=x+10$, here $x=16, y=26$.

We can use graphs to show multiple outputs of y for inputs x, and therefore visualize the relation between the two. Two common types of functions are linear functions and quadratic functions.

3.1.1 Linear functions

Linear functions $y=m x+c$ increases/decreases at a constant rate m, where m is the gradient and c is the y intercept.

Midpoint $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Gradient $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Parallel lines $\quad m_{1}=m_{2}$ (equal gradients)
Perpendicular lines $\quad m_{1} m_{2}=-1$

Determine the midpoint, distance and gradient using the two points $P_{1}(2,8)$ and $P_{2}(6,3)$

Midpoint: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{2+6}{2}, \frac{8+3}{2}\right)=(4,5.5)$
Distance: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(6-2)^{2}+(3-8)^{2}}=\sqrt{(4)^{2}+(5)^{2}}=\sqrt{41}$
Gradient: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=m=\frac{3-8}{6-2}=-\frac{5}{4}$
Parallel line: $-\frac{5}{4} x+3$
Perpendicular line: $\frac{4}{5} x+7$

3.1.2 Quadratic functions

$a>0$, positive quadratic

$a<0$, negative quad

Quadratic functions $y=a x^{2}+b x+c=0$
Graph has a parabolic shape, increase/decrease at an increasing rate.
The roots of an equation are the x-values for which $y=0$, in other words the x-intercept(s).

To find the roots of the equation you can use
factorisation: If $a=1$, use the factorization method $(x+p) \cdot(x+q)$
quadratic formula: If $a \neq 1$, use the quadratic formula

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{\Delta}}{2 a}
$$

Solving quadratic equations by factorisation.

Solve: $x^{2}-5 x+6=0$

1. Set up system of equations
$p+q=b$ and $p \times q=c$

$$
\left.\begin{array}{l}
p+q=-5 \\
p \times q=6
\end{array}\right\} p=-2 \text { and } q=-3
$$

2. Plug the values for p and q into:

$$
(x-2)(x-3)=x^{2}-5 x+6
$$

$(x+p)(x+q)$
3. Equate each part to 0
$(x+p)=0,(x+q)=0$,
and solve for x

$$
\left.\begin{array}{l}
(x-2)=0 \\
(x-3)=0
\end{array}\right\} x=2 \text { or } x=3
$$

Solving quadratic equations using the quadratic formula.

Solve: $3 x^{2}-8 x+4=0$

1. Calculate the discriminant Δ

$$
\Delta=(-8)^{2}-4 \cdot 3 \cdot 4=16
$$

$\Delta=b^{2}-4 a c$
2. How many solutions?

$\Delta>0$, so 2 solutions

$\Delta>0 \Rightarrow 2$ solutions
$\Delta=0 \Rightarrow 1$ solution
$\Delta<0 \Rightarrow$ no real solutions
3. Calculate x, use
$x=\frac{-b \pm \sqrt{\Delta}}{2 a}$

$$
\left.\begin{array}{rl}
x & =\frac{8 \pm \sqrt{16}}{2 \cdot 3}=\frac{8 \pm 4}{6} \\
& =\frac{8-4}{6}=\frac{4}{6} \\
& =\frac{8+4}{6}=2
\end{array}\right\} \Rightarrow x=\frac{2}{3} \quad \text { or } x=2
$$

By completing the square you can find the value of the vertex (the minimum or maximum). For the exam you will always be asked explicitly.

Find the vertex by completing the square

$$
4 x^{2}-2 x-5=0
$$

1. Move c to the other side	$4 x^{2}-2 x=5$
2. Divide by a	$x^{2}-\frac{1}{2} x=\frac{5}{4}$

3. Calculate $\left(\frac{x \text { coeficient }}{2}\right)^{2}$

$$
\left(\frac{-\frac{1}{2}}{2}\right)^{2}=\frac{1}{16}
$$

4. Add this term to both sides

$$
x^{2}-\frac{1}{2} x+\frac{1}{16}=\frac{5}{4}+\frac{1}{16}
$$

5. Factor perfect square, bring constant back

$$
\left(x-\frac{1}{4}\right)^{2}-\frac{21}{16}=0
$$

\Rightarrow minimum point $=\left(\frac{1}{4},-\frac{21}{16}\right)$

Other forms: $y=a(x-b)^{2}+k$ vertex (h, k) and $y=a(x-p)(x-q), x$ intercepts: $(p, 0)(q, 0)$.

3.1.3 Functions with asymptotes

Asymptote a straight line that a curve approaches, but never touches.

A single function can have multiple asymptotes: horizontal, vertical and in rare cases diagonal. Functions that contain the variable (x) in the denominator of a fraction will always have asymptotes, as well as exponential and logarithmic functions.

Vertical asymptotes

Vertical asymptotes occur when the denominator is zero, as dividing by zero is undefinable. Therefore if the denominator contains x and there is a value for x for which the denominator will be 0 , we get a vertical asymptote.

In the function $f(x)=\frac{x}{x-4}$, when $x=4$, the denominator is 0 so there is a vertical asymptote.

Horizontal asymptotes

Horizontal asymptotes are the value that a function tends to as x become really big or really small; technically: to the limit of infinity, $x \rightarrow \infty$. When x is large other parts of the function not involving x become insignificant and so can be ignored.

In the function $f(x)=\frac{x}{x-4}$, when x is small the 4 is important.

$$
x=10 \quad 10-4=6
$$

But as x gets bigger the 4 becomes increasingly insignificant

$$
\begin{array}{lrl}
x & =100 & 100-4
\end{array}=96
$$

Therefore as we approach the limits we can ignore the 4.

$$
\lim _{x \rightarrow \infty} f(x)=\frac{x}{x}=1
$$

So there is a horizontal asymptote at $y=1$.

Exponential and logarithmic functions

Exponential functions will always have a horizontal asymptote and logarithmic functions will always have a vertical asymptote, due to the nature of these functions. The position of the asymptote is determined by constants in the function.

Exponential

$$
f(x)=a^{x}+c
$$

where a is a positive number (often e)

Logarithmic

$$
g(x)=\log _{a}(x+b)
$$

ACADEMY

3.2 Rearranging functions

3.2.1 Inverse functions, $f^{-1}(x)$

Inverse functions are the reverse of a function. Finding the input x for the output y. You can think of it as going backwards through the number machine

This is the same as reflecting a graph in the $y=x$ axis.

Finding the inverse function.

$$
f(x)=2 x^{3}+3, \text { find } f^{-1}(x)
$$

1. Replace $f(x)$ with $y \quad y=2 x^{3}+3$
2. Solve for x

$$
y-3=2 x^{3}
$$

$$
\Rightarrow \quad \frac{y-3}{2}=x^{3}
$$

$$
\Rightarrow \sqrt[3]{\frac{y-3}{2}}=x
$$

3. Replace x with $f^{-1}(x)$ and y with $x \quad \sqrt[3]{\frac{x-3}{2}}=f^{-1}(x)$

3.2.2 Composite functions

Composite functions are combination of two functions.

$$
(f \circ g)(x) \quad \text { means } f \text { of } g \text { of } x
$$

To find the composite function above substitute the function of $g(x)$ into the x of $f(x)$.
Let $f(x)=2 x+3$ and $g(x)=x^{2}$. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
$(f \circ g)(x)$: replace x in the $f(x)$ function with the entire $g(x)$ function

$$
(2 g(x))+3=2 x^{2}+3
$$

$(g \circ f)(x)$: replace x in the $g(x)$ function with the entire $f(x)$ function

$$
(f(x))^{2}=(2 x+3)^{2}
$$

3.2.3 Transforming functions

Exam hint: describe the transformation with words as well to guarantee marks.

Always do translations last

Change to $f(x)$	Effect
$a \cdot f(x)$	Vertical stretch by factor a
$f(a \cdot x)$	Horizontal stretch by factor 1/a
$-f(x)$	Reflection in x-axis
$f(-x)$	Reflection in y-axis
$f(x)+a$	Move graph a units upwards
$f(x+a)$	Move graph a units to the left

Transforming functions $f(x) \rightarrow a f(x+b)$
Given $f(x)=\frac{1}{4} x^{3}+x^{2}-\frac{5}{4} x$, draw $3 f(x-1)$.

1. Sketch $f(x)$

2. Stretch the graph by the factor of a

3. Move graph by - b

Move graph by 1 to the right

VECTORS

Table of contents \& cheatsheet

Definitions

Vector a geometric object with magnitude (length) and direction, represented by an arrow.
Collinear points points that lie on the same line
Unit vector vector with magnitude 1

Base vector $\vec{i}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \vec{j}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \vec{k}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

4.1. Working with vectors

Vector from point O to point $A: \overrightarrow{O A}=\vec{a}=\binom{3}{2}$
Vector from point O to point $B: \overrightarrow{O B}=\vec{b}=\binom{-1}{1}$
Can be written in two ways:
$\vec{a}=\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)=\binom{3}{2}$
$\vec{a}=3 i+2 j+0 k=3 i+2 j$
Length of $\vec{a}:|\vec{a}|=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+2^{2}}=\sqrt{13}$
Addition \& multiplication: $\vec{a}+2 \vec{b}=\binom{3}{2}+2\binom{-1}{1}=\binom{3}{2}+\binom{-2}{2}=\binom{1}{4}$

Subtraction: $\vec{a}-\vec{b}=\binom{3}{2}-\binom{-1}{1}=\binom{4}{1}$

4.2. Equations of lines

32
Example of a line:

$r=\binom{0}{3}+t\binom{1}{1}$
direction vector
parameter
position vector

4.3. Dot product

34
The dot product of two vectors $\vec{c} \cdot \vec{d}$ can be used to find the angle between them.

$$
\begin{aligned}
& \text { Let } \vec{c}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right), \vec{d}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right) \\
& \\
& \vec{c} \cdot \vec{d}=|\vec{c}||\vec{d}| \cos \vartheta \\
& \vec{c} \cdot \vec{d}=c_{1} d_{1}+c_{2} d_{2}+c_{3} d_{3}
\end{aligned}
$$

4.1 Working with vectors

Vectors are a geometric object with a magnitude (length) and direction. They are represented by an arrow, where the arrow shows the direction and the length represents the magnitude.

So looking at the diagram we can see that vector \vec{u} has a greater magnitude than \vec{v}.
Vectors can also be described in terms of the points they pass between. So

$$
\left\{\begin{array}{l}
\vec{u}=\overrightarrow{P Q} \\
\vec{v}=\overrightarrow{P S}
\end{array}\right.
$$

with the arrow over the top showing the direction.

You can use vectors as a geometric algebra, expressing other vectors in terms of \vec{u} and \vec{v}. For example

$$
\overrightarrow{P R}=\vec{u}+\vec{v}
$$

$\overrightarrow{Q S}=-\vec{u}+\vec{v}$

$$
\overrightarrow{Q N}=\frac{1}{2}(-\vec{u}+\vec{v})
$$

This may seem slightly counter-intuitive at first. But if we add in some possible figures you can see how it works. If \vec{u} moves 5 units to the left and \vec{v} moves 1 unit to the right (-left) and 3 units down.

Then $\overrightarrow{P R}=\vec{u}+\vec{v}=5$ units to the left -1 unit to the right and 3 units down $=4$ units to the left and 3 units down.

4.1.1 Vectors with value

Formally the value of a vector is defined by its direction and magnitude within a 2 D or 3D space. You can think of this as the steps it has to take to go from its starting point to its end, moving only in the x, y and z axis.

Vector from point O to point A :

$$
\overrightarrow{O A}=\vec{a}=\binom{3}{2}
$$

Vector from point O to point B :

$$
\overrightarrow{O B}=\vec{b}=\binom{-1}{1}
$$

Vectors can be written in two ways:

Note: unless told otherwise, answer questions in the form used in the question.

1. $\vec{a}=\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)=\binom{3}{2}$, where the top value is movement in the x-axis. Then the next is movement in the y and finally in the z. Here the vector is in 2D space as there is no value for the z-axis.
2. as the sum of the three base vectors:

$$
\vec{i}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \vec{j}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \vec{k}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Here \vec{i} is moving 1 unit in the x-axis, $\vec{j} 1$ unit in the y-axis and $\vec{k} 1$ unit in the z-axis.

$$
\vec{a}=3 i+2 j+0 k=3 i+2 j
$$

When we work with vectors we carry out the mathematical operation in each axis separately. So x-values with x-values and so on.

Addition \& multiplication:

$$
\vec{a}+2 \vec{b}=\binom{3}{2}+2\binom{-1}{1}=\binom{3}{2}+\binom{-2}{2}=\binom{1}{4}
$$

Subtraction:

$$
\vec{a}-\vec{b}=\binom{3}{2}-\binom{-1}{1}=\binom{4}{1}
$$

However it must be remembered that vector notation does not give us the actual length (magnitude) of the vector. To find this we use something familiar.

Length of \vec{a} :

$$
\begin{aligned}
|\vec{a}| & =\sqrt{x^{2}+y^{2}} \\
& =\sqrt{3^{2}+2^{2}}=\sqrt{13}
\end{aligned}
$$

Sometimes you will be asked to work with unit vectors. These are vectors with a magnitude of 1 . We can convert all vectors to unit vectors.

Determine the unit vector \hat{a} in the direction of any vector \vec{a}

$$
\widehat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{3}{\sqrt{13}} \vec{i}+\frac{2}{\sqrt{13}} \vec{j}=\frac{1}{\sqrt{13}}\binom{3}{2}
$$

4.2 Equations of lines

We can further divide vectors into two types:

position vectors vectors from the origin to a point,

$$
\text { e.g. } P=(-1,3) \Rightarrow \vec{P}=\binom{-1}{3} .
$$

direction vectors vectors that define a direction.

Using both we can define lines in terms of vectors.
Example of a line:
$r=\binom{0}{3}+t\binom{1}{1}$
direction vector
parameter
position vector

Note the position vector can go to any where on the line. So in this example we could also use $(-3,0)$ or $(1,4)$. Equally the direction vector can be scaled. So we could use (2,2), (30, 30), \ldots

Because of this parallel lines will have direction vectors with the same ratio but not necessarily in exact numbers.

Parallel lines: direction vector of $L_{1}=$ direction vector of $L_{2} \times$ constant

Questions often deal with points and or multiple lines. It is worth making a sketch to help understand the question.

Finding a line passing through two points.

Find the equation of the line passing through points $P=(1,3,2)$ and $Q=(0,-1,4)$. Does point $R=$ $(-2,9,1)$ lie on the line?

Note this can go either way from Q to P of P to Q.

1. Write points as position vectors

$$
\vec{P}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \vec{Q}=\left(\begin{array}{c}
0 \\
-1 \\
4
\end{array}\right)
$$

2. Direction vector
$=$ vector between points

$$
\left(\begin{array}{c}
0-1 \\
-1-3 \\
4-2
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-4 \\
2
\end{array}\right)
$$

3. Choose \vec{P} or \vec{Q} as position vector

$$
r=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
-4 \\
2
\end{array}\right)
$$

4. Equate \vec{R} and the line r.

If there is no contradiction,
R lies on r
$\left(\begin{array}{c}-2 \\ 9 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)+t\left(\begin{array}{c}-1 \\ -4 \\ 2\end{array}\right)$
$\Rightarrow-2=1-t \Rightarrow t=3$
$\Rightarrow 9=3-4 t \Rightarrow 9 \neq 3-12$
$\Rightarrow R$ does not lie on the line.

Unless they are parallel, two lines will intersect at a point. One can find out if the lines intersect by equating the vector equations and attempting to solve the set of equations (remember: one needs as many equations as variables to solve).

Finding the intersection of two lines.
Find the intersection for $r_{1}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)+s\left(\begin{array}{c}-3 \\ 1 \\ 4\end{array}\right)$ and $r_{2}=\left(\begin{array}{c}-1 \\ 3 \\ 7\end{array}\right)+t\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)$

1. Equate
write simultaneous equations $\quad\left\{\begin{array}{l}2-3 s=-1+3 t \\ 1+s=3\end{array} \left\lvert\, \begin{array}{ll}\text { 2. Solve } & s=2, t=-1\end{array} \begin{array}{c}\text { 3. Substitute back into } r_{1} \text { or } r_{2} \\ \left.\begin{array}{c}2-3(2) \\ 4(2)\end{array}\right)=\left(\begin{array}{c}-4 \\ 3 \\ 8\end{array}\right)\end{array}\right.\right.$

4.3 Dot (scalar) product

The dot product of two vectors $\vec{c} \cdot \vec{d}$ can be used to find the angle between them.
DB 4.2

$$
\vec{c}=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \quad \vec{d}=\left(\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right) \quad \vec{c} \cdot \vec{d}=|\vec{c}||\vec{d}| \cos \vartheta
$$

Finding the angle between two lines.
(Often are these two vectors perpendicular)
Find the angle between $\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}8 \\ 1 \\ 3\end{array}\right)$.

1. Find $\vec{c} \cdot \vec{d}$ in terms of components $\quad \vec{c} \cdot \vec{d}=2 \times 8+3 \times 1+(-1) \times 3=16$
2. Find $\vec{c} \cdot \vec{d}$ in terms of magnitudes $\vec{c} \cdot \vec{d}=\sqrt{2^{2}+3^{2}+(-1)^{2}} \times \sqrt{8^{2}+1^{2}+3^{2}} \times$

$$
\cos \vartheta=\sqrt{14} \sqrt{74} \cos \vartheta
$$

3. Equate and solve for ϑ

$$
\begin{aligned}
& 16=\sqrt{14} \sqrt{74} \cos \vartheta \Rightarrow \cos \vartheta=\frac{16}{\sqrt{14} \sqrt{74}} \\
& \Rightarrow \vartheta=60.2^{\circ}
\end{aligned}
$$

When $\vartheta=90^{\circ}$ the vectors are perpendicular. As $\cos \left(90^{\circ}\right)=0 \Rightarrow \vec{c} \cdot \vec{d}=0$ Learn to add the following statement to questions asking "are they perpendicular?".
$\vec{c} \cdot \vec{d}=0$ therefore $\cos x=0$, therefore $x=90^{\circ}$. Lines are perpendicular. Of course, when lines are not perpendicular replace all $=$ with \neq.

TRIGONOMETRY AND
 CIRCULAR FUNCTIONS

Table of contents \& cheatsheet

5.1. Basic trigonometry

 radians $=\frac{\pi}{180^{\circ}} \times$ degrees \quad degrees $=\frac{180^{\circ}}{\pi} \times$ radians Before each question make sure calculator is in correct setting: degrees or radians?

Area of a sector $=\frac{1}{2} r^{2} \cdot \vartheta$
Arc length $=r \cdot \vartheta$
ϑ in radians, $r=$ radius.
Right-angle triangle (triangle with 90° angle)

adjacent
$\begin{aligned} \sin \vartheta & =\frac{\text { opposite }}{\text { hypotenuse }} & \mathrm{SOH} \\ \cos \vartheta & =\frac{\text { adjacent }}{\text { hypotenuse }} & \mathrm{CAH} \\ \tan \vartheta & =\frac{\text { opposite }}{\text { adjacent }} & \text { TOA }\end{aligned}$

Non-right angle triangles

Sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Use this rule when you know: 2 angles and a side (not between the angles) or 2 sides and an angle (not between the sides).
Cosine rule: $c^{2}=a^{2}+b^{2}-2 a b \cos C$
Use this rule when you know: 3 sides or 2 sides and the angle between them.
Area of a triangle: Area $=\frac{1}{2} a b \sin C$
Use this rule when you know: 3 sides or 2 sides and the angle between them.

Three-figure bearings

Direction given as an angle of a full circle. North is 000 and the angle is expressed in the clockwise direction from North. So East is 090 , South is 180 and West 270.

5.2. Circular functions

deg	0°	30°	45°	60°	90°	120°	135°	150°	180°
rad	0	$\frac{1}{6} \pi$	$\frac{1}{4} \pi$	$\frac{1}{3} \pi$	$\frac{1}{2} \pi$	$\frac{2}{3} \pi$	$\frac{3}{4} \pi$	$\frac{5}{6} \pi$	π
$\sin \vartheta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos \vartheta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan \vartheta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Trigonometric function $y=a \sin (b x+c)+d$
Amplitude: a
Period: $\frac{360^{\circ}}{b}$ or $\frac{2 \pi}{b}$
Horizontal shift: c
Vertical shift: d

Trigonometric identities

$$
\begin{aligned}
& \tan \vartheta=\frac{\sin \vartheta}{\cos \vartheta} \\
& \sin ^{2} \vartheta+\cos ^{2} \vartheta=1 \\
& 2 \sin \vartheta \cos \vartheta=\sin 2 \vartheta \\
& \cos 2 \vartheta=\cos ^{2} \vartheta-\sin ^{2} \vartheta
\end{aligned}
$$

5.1 Basic trigonometry

This section offers an overview of some basic trigonometry rules and values that will recur often. It is worthwhile to know these by heart; but it is much better to understand how to obtain these values. Like converting between Celsius and Fahrenheit; you can remember some values that correspond to each other but if you understand how to obtain them, you will be able to convert any temperature.

5.1.1 Converting between radians and degrees

$$
\begin{aligned}
& \text { radians }=\frac{\pi}{180^{\circ}} \times \text { degrees } \\
& \text { degrees }=\frac{180^{\circ}}{\pi} \times \text { radians }
\end{aligned}
$$

Table 5.1: Common radians/degrees conversions

Degrees	0°	30°	45°	60°	90°	120°	135°	180°	270°	360°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	π	$\frac{3 \pi}{2}$	2π

5.1.2 Circle formulas

DB 3.1

Area of a sector $=\frac{1}{2} r^{2} \cdot \vartheta$
Arc length $=r \cdot \vartheta$
ϑ in radians, $r=$ radius.

5.1.3 Right-angle triangles

$$
\begin{array}{rlrl}
a^{2} & =b^{2}+c^{2} & \text { Pythagoras } \\
\sin \vartheta & =\frac{\text { opposite }}{\text { hypotenuse }} & & \mathrm{SOH} \\
\cos \vartheta & =\frac{\text { adjacent }}{\text { hypotenuse }} & \mathrm{CAH} \\
\tan \vartheta & =\frac{\text { opposite }}{\text { adjacent }} & \mathrm{TOA}
\end{array}
$$

Two important triangles to memorize:

The IB loves asking questions about these special triangles which have whole numbers for all the sides of the right triangles.

Note: these triangles can help you in finding the sin, \cos and tan of the angles that you should memorize, shown in table 5.2 at page 42 . Use $\mathrm{SOH}, \mathrm{CAH}, \mathrm{TOA}$ to find the values.

Read the question,
does it specify if you are looking for an acute (less than 90°) or obtuse (more than 90°) angle. If not there may be 2 solutions. Exam hint: Use sketches when working with worded questions!

DB 3.6

5.1.4 Non-right angle triangles

Sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Use this rule when you know:

2 angles and a side (not between the angles)

To find any missing angles or side lengths in non-right angle triangles, use the cosine and sine rule. Remember that the angles in the triangle add up to 180° !
or 2 sides and an angle (not between the sides)

Cosine rule: $c^{2}=a^{2}+b^{2}-2 a b \cos C$
Use this rule when you know:

3 sides

Area of a triangle: Area $=\frac{1}{2} a b \sin C$
Use this rule when you know:
2 sides and the angle between them

$\triangle A B C: A=40^{\circ}, B=73^{\circ}, a=27 \mathrm{~cm}$.

Find $\angle C$.

$$
\angle C=180^{\circ}-40^{\circ}-73^{\circ}=67^{\circ}
$$

Find b.

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{27}{\sin 40^{\circ}} & =\frac{b}{\sin 73^{\circ}} \\
b & =\frac{27}{\sin 40^{\circ}} \cdot \sin 73^{\circ}=40.169 \approx 40.2 \mathrm{~cm}
\end{aligned}
$$

Find c.

$$
\begin{aligned}
\frac{c}{\sin C} & =\frac{a}{\sin A} \\
c & =\frac{27}{\sin 40^{\circ}} \times \sin 67^{\circ}=38.7 \mathrm{~cm}
\end{aligned}
$$

Find the area.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot 27 \cdot 40 \cdot 2 \cdot \sin 67^{\circ} \\
& =499.59 \approx 500 \mathrm{~cm}^{2}
\end{aligned}
$$

Find z.

$$
\begin{aligned}
z^{2} & =6^{2}+10^{2}-2 \cdot 6 \cdot 10 \cdot \cos 35^{\circ} \\
z^{2} & =37.70 \\
z & =6.14 \mathrm{~km}
\end{aligned}
$$

Find $\angle x$.

$$
\begin{aligned}
\frac{6}{\sin x} & =\frac{6.14}{\sin 35^{\circ}} \\
\sin x & =0.56 \\
x & =\sin ^{-1}(0.56)=55.91^{\circ}
\end{aligned}
$$

5.1.5 Three-figure bearings

In questions on
three-figure bearings,
you are often
confronted with quite a
lot of text, so it is a
good idea to first make
a drawing. You may
also need to create a
right angle triangle and
use your basic
trigonometry.

A ship left port A and sailed 20 km in the direction 120.

It then sailed north for 30 km to reach point C. How far from the port is the ship?

1. Draw a sketch

2. Find an internal angle of the triangle.
$\vartheta=180^{\circ}-120^{\circ}=60^{\circ}=C$
Similar angles between two parallel lines
3. Use cosine or sin rule.

$$
\begin{aligned}
& \text { (here cosine) } \\
& A C^{2}=A B^{2}+B C^{2}-2 \cdot A B \cdot B C \cdot \cos \vartheta \\
& A C^{2}=20^{2}+30^{2}-2 \cdot 20 \cdot 30 \cdot \cos 60^{\circ} \\
& A C^{2}=400+900-2 \cdot 20 \cdot 30 \cdot \frac{1}{2} \\
& A C=\sqrt{400+900-600}=\sqrt{700}
\end{aligned}
$$

5.2 Circular functions

5.2.1 Unit circle

The unit circle is a circle with a radius of 1 drawn from the origin of a set of axes. The y-axis corresponds to sine and the x-axis to cosine; so at the coordinate $(0,1)$ it can be said that cosine $=0$ and sine $=1$, just like in the $\sin x$ and $\cos x$ graphs when plotted.

The unit circle is particularly useful to find all the solutions to a trigonometric equation within a certain domain. As you can see from their graphs, functions with $\sin x, \cos x$ or $\tan x$ repeat themselves every given period; this is why they are also called circular functions. As a result, for each y-value there is an infinite amount of x-values that could give you this output. This is why questions will give you a set domain that limits the range of x-values you should consider in your calculations or represent on your sketch (e.g. $0^{\circ} \leq x \leq 360^{\circ}$).

Relations between sin, cos and tan:

- α and β have the same sine
- α and ϑ have the same cosine
- β and ϑ have the same tangent

$$
\sin 30^{\circ}=\sin 150^{\circ}
$$

$\cos 30^{\circ}=\cos 330^{\circ}$

Table 5.2: Angles to memorize

deg	0°	30°	45°	60°	90°	120°	135°	150°	180°
rad	0	$\frac{1}{6} \pi$	$\frac{1}{4} \pi$	$\frac{1}{3} \pi$	$\frac{1}{2} \pi$	$\frac{2}{3} \pi$	$\frac{3}{4} \pi$	$\frac{5}{6} \pi$	π
$\sin \vartheta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\cos \vartheta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan \vartheta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

5.2.2 Graphs: trigonometric functions

$\sin x$

Domain: $\quad x \in \mathbb{R}$
Amplitude: $-1 \leq y \leq 1$
Period: $\quad 2 n \pi, n \cdot 360^{\circ}$, with $n \in \mathbb{Z}$
$\cos x$

Domain: $\quad x \in \mathbb{R}$
Amplitude: $\quad-1 \leq y \leq 1$
Period: $\quad 2 n \pi, n \cdot 360^{\circ}$, with $n \in \mathbb{Z}$
$\tan x$

Domain: $\quad x \in \mathbb{R}, x \neq \frac{\pi}{2}+k \pi$,
with $k \in \mathbb{Z}$
Amplitude: $-\infty<y<\infty$
Period:
$n \pi, n \cdot 180^{\circ}$, with $n \in \mathbb{Z}$

5.2.3 Transformations

Besides the transformations in the functions chapter, trigonometric functions have some transformations with their own particular names. For a trigonometric function, the vertical stretch on a graph is determined by its amplitude, the horizontal stretch by its period and an upward/downward shift by its axis of oscillation.

A trigonometric function, given by $y=a \sin (b x+c)+d$, has:

- an amplitude a;
- a period of $\frac{360^{\circ}}{b}$ or $\frac{2 \pi}{b}$;
- a horizontal shift of $+c$ to the left, in degrees or radians;
- vertical shift of $+d$ upwards, oscillates around d.

Transformations of $y=\cos x$.

5.2.4 Identities and equations

In order to solve trigonometric equations, you will sometimes need to use identities. Identities allow you to rewrite your equation in a way that will make it easier to solve algebraically.

Trigonometric identity

$\tan \vartheta=\frac{\sin \vartheta}{\cos \vartheta}$
$\sin ^{2} \vartheta+\cos ^{2} \vartheta=1$
$2 \sin \vartheta \cos \vartheta=\sin 2 \vartheta$
$\cos 2 \vartheta=\cos ^{2} \vartheta-\sin ^{2} \vartheta$

$$
\begin{aligned}
& \cos \vartheta=\frac{\sin \vartheta}{\tan \vartheta} \\
& \sin \vartheta=\cos \vartheta \times \tan \vartheta \\
& \sin ^{2} \vartheta=1-\cos ^{2} \vartheta \\
& \cos ^{2} \vartheta=1-\sin ^{2} \vartheta
\end{aligned}
$$

Popular rearrangement

$$
\begin{aligned}
& \cos 2 \vartheta=1-2 \sin ^{2} \vartheta \\
& \cos 2 \vartheta=2 \cos ^{2} \vartheta-1
\end{aligned}
$$

Solving equations with trigonometric identities

Solve $2 \cos ^{2} x+\sin x=1,0^{\circ} \leq x \leq 360^{\circ}$.

1. Identify which identity from the databook to use. Note you are always aiming to get an equation with just, sin, cos or tan.

Here we could use either
$\sin ^{2} \vartheta+\cos ^{2} \vartheta=1$ or $\cos ^{2} \vartheta-\sin ^{2} \vartheta=\cos 2 \vartheta$. We will use the first so that we get an equation with just \sin.
2. Rearrange identity and substitute into equation.

$$
\cos ^{2} \vartheta=1-\sin ^{2} \vartheta
$$

$2\left(1-\sin ^{2} x\right)+\sin x=1$
$2-2 \sin ^{2} x+\sin x=1$
$-2 \sin ^{2} x+\sin x+1=0$
3. Solve for x. Giving answers within the stated range. Recognise that here the

Substitue u for $\sin x$:

$$
-2 u^{2}+u+1=0
$$

eqauation looks like a quadratic equation.
$(-2 u-1)(u-1)=0$
$u=\sin x \Rightarrow 1 \quad x \Rightarrow 90^{\circ}$
$u=\sin x \Rightarrow-0.5 \quad x \Rightarrow 210^{\circ}$ or 330°

DIFFERENTIATION

Table of contents \& cheatsheet

Definitions

Differentiation is a way to find the gradient of a function at any point, written as $f^{\prime}(x), y^{\prime}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Tangent line to a point on a curve is a linear line with the same gradient as that point on the curve.

6.2. Tangent and normal

Tangent line with the same gradient as a point on a curve.
Normal perpendicular to the tangent $m=\frac{-1}{\text { slope of tangent }}$
Both are linear lines with general formula: $y=m x+c$.

1. Use derivative to find gradient of the tangent. For normal then do $-\frac{1}{\text { slope of tangent }}$.
2. Input the x-value of the point into $f(x)$ to find y.
3. Input y, m and the x-value into $y=m x+c$ to find c.

6.4. Sketching graphs

Gather information before sketching:
Intercepts $\quad x$-intercept: $f(x)=0$
y-intercept: $f(0)$
Turning points minima: $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<0$
maxima: $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)>0$
point of inflection: $f^{\prime \prime}(x)=0$
Asymptotes
vertical: x-value when the function divides by 0 horizontal: y-value when $x \rightarrow \infty$

Plug the found x-values into $f(x)$ to determine the y-values.

6.1. Polynomials

Product $y=u v$, then: $y^{\prime}=u v^{\prime}+u^{\prime} v$
Quotient $y=\frac{u}{v}$, then: $y^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
Chain $y=g(u)$ where $u=f(x)$, then:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

6.3. Turning points

6.5. Applications

Kinematics

Derivative represents the rate of change, integration the reverse.

6.1 Polynomials

As you have learnt in the section on functions, a straight line graph has a gradient. This gradient describes the rate at which the graph is changing and thanks to it we can tell how steep the line will be. In fact gradients can be found for any function - the special thing about linear functions is that their gradient is always the same (given by m in $y=m x+c)$. For polynomial functions the gradient is always changing. This is where calculus comes in handy; we can use differentiation to derive a function using which we can find the gradient for any value of x.

Using the following steps, you can find the derivative function $\left(f^{\prime}(x)\right)$ for any polynomial function $(f(x))$.

Polynomial a mathematical expression or function that contains several terms often raised to different powers
e.g. $y=3 x^{2}, \quad y=121 x^{5}+7 x^{3}+x \quad$ or $\quad y=4 x^{\frac{2}{3}}+2 x^{\frac{1}{3}}$

Principles $y=f(x)=a x^{n} \quad \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=f^{\prime}(x)=n a x^{n-1}$.
The (original) function is described by y or $f(x)$, the derivative (gradient) function is described by $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $f^{\prime}(x)$.

Derivative of a constant (number) 0
e.g. For $f(x)=5, f^{\prime}(x)=0$

Derivative of a sum sum of derivatives.

If a function you are looking to differentiate is made up of several summed parts, find the derivatives for each part separately and then add them together again.
e.g. $f(x)=a x^{n}$ and $g(x)=b x^{m}$

$$
f^{\prime}(x)+g^{\prime}(x)=n a x^{n-1}+m b x^{m-1}
$$

6.1.1 Rules

With more complicated functions, in which several functions are being multiplied or divided by one another (rather than just added or substracted), you will need to use the product or quotient rules.

Product rule

When functions are multiplied: $y=u v$
then:

$$
y^{\prime}=u v^{\prime}+u^{\prime} v
$$

which is the same as

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

Quotient rule

When functions are divided: $y=\frac{u}{v}$ then: $\quad y^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$ which is the same as
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$

$$
y^{\prime}=x^{2}(\cos x)^{\prime}+\left(x^{2}\right)^{\prime} \cos x
$$

$$
=-x^{2} \sin x+2 x \cos x
$$

Let $y=\frac{x^{2}}{\cos x}$, then

$$
\begin{aligned}
y^{\prime} & =\frac{\left(x^{2}\right)^{\prime} \cos x-x^{2}(\cos x)^{\prime}}{(\cos x)^{2}} \\
& =\frac{2 x \cos x+x^{2} \sin x}{\cos ^{2} x}
\end{aligned}
$$

Chain rule

Function inside another function: $y=g(u)$ where $u=f(x)$
then: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}$.

Differentiating with the chain rule.

Let $y=(\cos x)^{2}$, determine the derivative y^{\prime}

1. What is the outside function? What is the	Inside function: $u=\cos x$
inside function?	Outside function: $y=u^{2}$

2. Find u^{\prime} and y^{\prime}

$$
u^{\prime}=\frac{\mathrm{d} u}{\mathrm{~d} x}=-\sin x ; \quad y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} u}=2 u
$$

3. Fill in formula

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
& =2 u(-\sin x) \\
& =-2 \sin x \cos x
\end{aligned}
$$

6.2 Tangent and normal equation

Tangent a straight line that touches a curve at one single point. At that point, the gradient of the curve is equal to the gradient of the tangent.

Normal a straight line that is perpendicular to the tangent line:

$$
\text { slope of normal }=\frac{-1}{\text { slope of tangent }}
$$

For any questions with tangent and/or normal lines, use the steps described in the following example.

Finding the linear function of the tangent.

Let $f(x)=x^{3}$. Find the equation of the tangent at $x=2$

1. Find the derivative and fill in value of x to $f^{\prime}(x)=3 x^{2}$
determine slope of tangent $\quad f^{\prime}(2)=3 \cdot 2^{2}=12$
identical for the equation of the tangent and normal

Steps 1, 2 and 4 are identical for the equation of the tangent and normal

Finding the linear function of the normal.

Let $f(x)=x^{3}$. Find the equation of the normal at $x=2$
1.

$$
\begin{aligned}
& f^{\prime}(2)=12 \\
& f(x)=8 \\
& m=\frac{-1}{12} \\
& 8=-\frac{1}{12} x+c
\end{aligned}
$$

2. $\quad f(x)=8$
3. Determine the slope of the normal
$m=\frac{-1}{\text { slope tangent }}$ and plug it and the
4. Fill in the value for x to find c

$$
\begin{aligned}
& 8=-\frac{1}{12}(2)+c \Rightarrow c=\frac{49}{6} \\
& \text { eq. of normal: } y=-\frac{1}{12} x+\frac{49}{6}
\end{aligned}
$$

To find the gradient of a function for any value of x.

$f(x)=5 x^{3}-2 x^{2}+x$. Find the gradient of $f(x)$ at $x=3$.

Press menu
4: Calculus
1: Numerical Derivative
at a Point

Enter the variable used in your function (x) and the value of x that you want to find. Keep the settings on 1st Derivative
Press

Type in your function

In this case, $f^{\prime}(3)=124$

6.3 Turning points

There are three types of turning points:

1. Local maxima

2. Local minima

3. Points of inflection

We know that when $f^{\prime}(x)=0$ there will be a maximum or a minimum. Whether it is a maximum or minimum should be evident from looking at the graph of the original function. If a graph is not available, we can find out by plugging in a slightly smaller and slightly larger value than the point in question into $f^{\prime}(x)$. If the smaller value is negative and the larger value positive then it is a local minimum. If the smaller value is positive and the larger value negative then it is a local maximum.

If you take the derivative of a derivative function (one you have already derived) you get the second derivate. In mathematical notation, the second derivative is written as $y^{\prime \prime}$, $f^{\prime \prime}(x)$ or $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. We can use this to determine whether a point on a graph is a maximum, a minimum or a point of inflection as demonstrated in the following Figure 6.1.

Notice how the points of inflection of $f(x)$ are minima and maxima in $f^{\prime}(x)$ and thus equal 0 in $f^{\prime \prime}(x)$

Figure 6.1: Graph that shows a local maximum, a local minimum and points of inflection

Finding turning points.

The function $f(x)=x^{3}+x^{2}-5 x-5$ is shown. Use the first and second derivative to find turning points: the minima, maxima and points of inflection (POI).

1. Find the first and second derivative.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+2 x-5 \\
& f^{\prime \prime}(x)=6 x+2
\end{aligned}
$$

2. Find $x_{\text {min }}$ and $x_{\text {max }}$ by setting $f^{\prime}(x)=0$. $3 x^{2}+2 x-5=0$

$$
\text { GDC yields: } x=1 \text { or } x=-\frac{5}{3}
$$

3. Find y-coordinates by inserting the

$$
f(1)=(1)^{3}+(1)^{2}-5(1)-5=-8
$$

x-value(s) into the original $f(x)$.

$$
\text { so } x_{\min } \text { at }(1,-8) \text {. }
$$

$$
f\left(-\frac{5}{3}\right)=\left(-\frac{5}{3}\right)^{3}+\left(-\frac{5}{3}\right)^{2}
$$

$$
-5\left(-\frac{5}{3}\right)-5=1.48(3 \text { s.f. })
$$

$$
\text { so } x_{\max } \text { at }\left(-\frac{5}{3}, 1.48\right) \text {. }
$$

4. Find POI by setting $f^{\prime \prime}(x)=0 \quad 6 x+2=0$
5. Then enter values of x into original function to find coordinates

$$
\begin{aligned}
& f\left(-\frac{1}{3}\right)=\left(-\frac{1}{3}\right)^{3}+\left(-\frac{1}{3}\right)^{2}-5\left(-\frac{1}{3}\right)-5 \\
& y=-3.26 \text { (3 s.f.) } \\
& \text { so POI at }\left(-\frac{1}{3},-3.26\right)
\end{aligned}
$$

To find turning points (local maximum/minimum) of a function

Find the coordinates of the local minimum for $f(x)=4 x^{2}-5 x+3$

6.4 Sketching graphs

When sketching a graph, you will need the following information:

1. Intercepts,
2. Turning points (maximums, minimums and inflection points) and
3. Asymptotes

Sketching a function.

Sketch the function $f(x)=\frac{x^{2}}{x^{2}-16}$

1. Note down all information:
2. Intercepts:

- y-intercept: $f(0)$
- x-intercept: $f(x)=0$

2. Turning points:

- min/max: $f^{\prime}(x)=0$
- inflection: $f^{\prime \prime}(x)=0$

3. Asymptotes:

- vertical: denominator $=0, x=-b$, for $\log (x+b)$
- horizontal: $\lim _{\substack{x \rightarrow \infty \text { or } \\ x \rightarrow-\infty}} y=c$, for $a^{x}+c$

1. y-intercept when $x=0$:
$f(0)=\frac{0^{2}}{0^{2}-16}=0 \quad(0,0)$
$f(x)=\frac{x^{2}}{x^{2}-16}=0 \quad x=0 \quad$ (same)
This is the only x-intercept.
2. Turning point: $f^{\prime}(x)=\frac{-32 x}{x^{2}-16^{2}}$,
$x=0(0,0)$ (Found with quotient rule).
$f^{\prime}=0$ when $x=0$.
3. Vertical asymptotes when
$x^{2}-16=0$, so $x=4$ and $x=-4$.
Horizontal asymptote:
$\lim _{x \rightarrow \infty} f(x)=\frac{x^{2}}{x^{2}}=1$, so $y=1$

To find the y-coordinate, input the x-value into the original $f(x)$.
2. Mark out information on axis

Clearly indicate them to guarantee marks

3. Think about where your lines are coming from

4.

Join the dots

6.5 Applications

6.5.1 Kinematics

Kinematics deals with the movement of bodies over time. When you are given one function to calculate displacement, velocity or acceleration you can use differentiation or integration to determine the functions for the other two.

The derivative represents the rate of change, i.e. the gradient of a graph. So, velocity is the rate of change in displacement and acceleration is the rate of change in velocity.

Answering kinematics questions.

A diver jumps from a platform at time $t=0$ seconds. The distance of the diver above water level at time t is given by $s(t)=-4.9 t^{2}+4.9 t+10$, where s is in metres.
Find when velocity equals zero. Hence find the maximum height of the diver.

1. Find an equation for velocity by $\quad v(t)=-9.8 t+4.9$
differentiating equation for distance
2. Solve for $v(t)=0 \quad-9.8 t+4.9=0, \quad t=0.5$
3. Put value into equation for distance to $\quad s(0.5)=-4.9(0.5)^{2}+4.9(0.5)+10=$ find height above water 11.225 m

6.5.2 Optimization

We can use differentiation to find minimum and maximum areas/volumes of various shapes. Often the key skill with these questions is to find an expression using simple geometric formulas and rearranging in order to differentiate.

Finding the min/max area or volume

The sum of height and base of a triangle is 40 cm . Find an expression for its area in terms of x, its base length. Hence find its maximum area.

1.	Find expressions for relevant dimensions of the shape	$\begin{aligned} \text { length of the base }(b) & =x \\ \text { height }+ \text { base } & =40 \\ \text { so } b+x & =40 \\ \text { area of triangle } A & =\frac{1}{2} x b \end{aligned}$
2.	Reduce the number of variables by solving the simultaneous equations	Since $b=40-x$, substitute b into A : $A=\frac{1}{2} x(40-x)=-\frac{1}{2} x^{2}+20 x$
3.	Differentiate	$f^{\prime}(x)=-x+20$
4.	Find x when $f^{\prime}(x)=0$	$-x+20=0 \Rightarrow x=20$
5.	Plug x value in $f(x)$	$-\frac{1}{2} 20^{2}+20(20)=-200+400=200 \mathrm{~cm}^{2}$

If an expression is given in the problem, skip to step 2 (e.g. cost/profit problems).

Table of contents \& cheatsheet

7.1. Indefinite integral

$\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+C \quad n \neq-1$

Integration with an internal function
$\int f(a x+b) \mathrm{d} x$
Integrate normally and multiply by $\frac{1}{\text { coefficient of } x}$

Integration by substitution

$\int f(g(x)) \cdot g^{\prime}(x) \mathrm{d} x$

7.2. Definite integral

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) \quad \text { where } \quad F=\int f(x) \mathrm{d} x
$$

Be careful, the order you substitute a and b into the indefinite integral is relevant for your answer:

$$
\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x
$$

Area between a curve and the x-axis

By determining a definite integral for a function, you can find the area beneath the curve that is between the two x-values indicated as its limits.

$$
A_{\text {curve }}=\int_{a}^{b} f(x) \mathrm{d} x
$$

Area between two curves

Using definite integrals you can also find the areas enclosed between curves.

$$
A_{\text {between }}=\int_{a}^{b}(g(x)-f(x)) \mathrm{d} x
$$

With $g(x)$ as the "top" function (furthest from the x axis). For the area between curves, it does not matter what is above/below the x-axis.

Volume of revolution

$$
V=\pi \int_{a}^{b} y^{2} \mathrm{~d} x=\int_{a}^{b} \pi y^{2} \mathrm{~d} x
$$

Besides finding areas under and between curves, integration can also be used to calculate the volume of the solid that a curve would make if it were rotated 360° around its axis - this is called the volume of revolution.

7.1 Indefinite integral and boundary condition

Integration is essentially the opposite of derivation. The following equation shows how to integrate a function:

$$
\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1
$$

As you can see, every time you integrate the power on your variable will increase by 1 (this is opposite of what happens when you derive, then it always decreases). Whenever you integrate you also always add $+C$ to this function. This accounts for any constant that may have been lost while deriving. As you may have noticed, whenever you do derivation any constants that were in the original function, $f(x)$, become 0 in the derivative function, $f^{\prime}(x)$. In order to determine the value of C, you need to fill in a point that lies on the curve to set up an equation in which you can solve for C. (Note: this is the same thing you need to do when finding the y-intercept, C, for a linear function - see Functions: Linear functions).

Standard integration.

Let $f^{\prime}(x)=12 x^{2}-2$
Given that $f(-1)=1$, find $f(x)$.

1. Separate summed parts (optional)

$$
\int 12 x^{2}-2 \mathrm{~d} x=\int 12 x^{2} \mathrm{~d} x+\int-2 \mathrm{~d} x
$$

2. Integrate

$$
\begin{aligned}
& f(x)=\int 12 x^{2} \mathrm{~d} x+\int-2 \mathrm{~d} x= \\
& \frac{12}{3} x^{3}-2 x+C
\end{aligned}
$$

3. Fill in values of x and $f(x)$ to find C

$$
\begin{aligned}
& \text { Since } f(-1)=1, \\
& 4(-1)^{3}-2(-1)+C=1 \\
& C=3
\end{aligned}
$$

So: $f(x)=4 x^{3}-2 x+3$

7.1.1 Integration with an internal function

$$
\int f(a x+b) \mathrm{d} x \quad \text { integrate normally and multiply by } \frac{1}{\text { coefficient of } x}
$$

Find the following integrals:

Coefficient of $x=3$, so
$\int \mathrm{e}^{3 x-4} \mathrm{~d} x=\frac{1}{3} \mathrm{e}^{3 x-4}+C$

$$
\int \cos (5 x-2) \mathrm{d} x
$$

Coefficient of $x=5$, so
$\int \cos (5 x-2) \mathrm{d} x=\frac{1}{5} \sin (5 x-2)+C$

7.1.2 Integration by substitution

$$
\int f(g(x)) \cdot g^{\prime}(x) \mathrm{d} x
$$

Usually these questions will be the most complicated-looking integrals you will have to solve. So if an integration question looks complicated, try to look for a function and its derivative inside the function you are looking to integrate; it is likely to be a question where you have to use the substitution method! Study the example to see how it's done.

Integrate by substitution
Find $\int 3 x^{2} e^{x^{3}} d x$

1. Identify the inside function u, this is the $g(x)=u=x^{3}$
function whose derivative is also inside
$f(x)$.
2. Find the derivative $u^{\prime}=\frac{\mathrm{d} u}{\mathrm{~d} x} \quad \frac{\mathrm{~d} u}{\mathrm{~d} x}=3 x^{2}$
3.

Substitute u and $\frac{\mathrm{d} u}{\mathrm{~d} x}$ into the integral $\quad \int \mathrm{e}^{u} \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x=\int \mathrm{e}^{u} \mathrm{~d} u=\mathrm{e}^{u}+C$
(this way $\mathrm{d} x$ cancels out)
4. Substitute u back to get a function with x

$$
\int \mathrm{e}^{u}+C=\mathrm{e}^{x^{3}}+C
$$

7.2 Definite integral

If there are limit values indicated on your integral, you are looking to find a definite integral. This means that these values will be used to find a numeric answer rather than a function.

This is done in the following way, where the values for a and b are substituted as x-values into your indefinite integral:

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) \quad \text { where } \quad F=\int f(x) \mathrm{d} x
$$

Be careful, the order you substitute a and b into the indefinite integral is relevant for your answer:

$$
\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x
$$

Solving definite integrals.

Find $\int_{3}^{7} 12 x^{2}-2 \mathrm{~d} x$, knowing that $F(x)=4 x^{3}-2 x$

1. Find the indefinite integral
(without $+C$)

$$
\begin{aligned}
& \int_{3}^{7} 12 x^{2}-2 \mathrm{~d} x=\left[4 x^{3}-2 x\right]_{3}^{7} \\
& =\left[4(7)^{3}-2(7)\right]-\left[4(3)^{3}-2(3)\right] \\
& =1256
\end{aligned}
$$

2. Fill in: $F(b)-F(a)$
(integral $x=b)-($ integral $x=a)$

7.2.1 Area

Area between a curve and the \boldsymbol{x}-axis

Area between two curves

By determining a definite integral for a function, you can find the area beneath the curve that is between the two x-values indicated as its limits.

$$
A_{\text {curve }}=\int_{a}^{b} f(x) \mathrm{d} x
$$

Note: the area below the x-axis gives a negative value for its area. You must take that value as a positive value to determine the area between a curve and the x-axis. Sketching the graph will show what part of the function lies below the x-axis. So

$$
A_{\text {curve }}=\int_{a}^{b} f(x) \mathrm{d} x+\left|\int_{b}^{c} f(x) \mathrm{d} x\right|
$$

or

$$
A_{\text {curve }}=\int_{a}^{c}|f(x)| \mathrm{d} x
$$

Using definite integrals you can also find the areas enclosed between curves:

$$
A_{\text {between }}=\int_{a}^{b}(g(x)-f(x)) \mathrm{d} x
$$

With $g(x)$ as the "top" function (furthest from the x-axis). For the area between curves, it does not matter what is above/below the x-axis.

Finding areas with definite integrals.

Let $y=x^{3}-4 x^{2}+3 x$
Find the area from $x=0$ to $x=3$.

1. Find the x-intercepts: $f(x)=0 \quad x^{3}-4 x^{2}+3 x=0$, using the GDC:

$$
x=0 \text { or } x=1 \text { or } x=3
$$

2. If any of the x-intercepts lie within the range, sketch the function to see which parts lie above and below the x-axis.

3. Setup integrals and integrate

$$
\begin{aligned}
\text { Left: } & \int_{0}^{1} x^{3}-4 x^{2}+3 x \mathrm{~d} x= \\
& =\left[\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+\frac{3}{2} x^{2}\right]_{0}^{1} \\
& =\left(\frac{1}{4}-\frac{4}{3}+\frac{3}{2}\right)-(0) \\
& =\frac{5}{12}
\end{aligned}
$$

$$
\text { Right: } \int_{1}^{3} x^{3}-4 x^{2}+3 x \mathrm{~d} x=
$$

$$
=\left[\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+\frac{3}{2} x^{2}\right]_{1}^{3}
$$

$$
=\left(\frac{1}{4}(3)^{4}-\frac{4}{3}(3)^{3}+\frac{3}{2}(3)^{2}\right)
$$

$$
-\left(\frac{1}{4}(1)^{4}-\frac{4}{3}(1)^{3}+\frac{3}{2}(1)^{2}\right)
$$

$$
=-\frac{8}{3}
$$

4. Add up the areas (and remember areas are never negative!)

$$
\frac{5}{12}+\frac{8}{3}=\frac{37}{12}
$$

Alternatively, use the calculator to find areas

Calculate the area between $\int_{0}^{3} x^{3}-4 x^{2}+3 x$ and the x-axis

Press menu
4: Calculus
2: Numerical integral

Enter the boundaries and before putting the function.
Press (円) , choose 'abs('

Enter the function and place the variable (usually x) after d

In this case, the area is 3.083

7.2.2 Volume of revolution

Besides finding areas under and between curves, integration can also be used to calculate the volume of the solid that a curve would make if it were rotated 360° around its axis - this is called the volume of revolution.

$$
V=\pi \int_{a}^{b} y^{2} \mathrm{~d} x \equiv V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x
$$

Find the area from $x=1$ to $x=4$ for the function $y=\sqrt{x}$.

$$
A=\int_{1}^{4} \sqrt{x} \mathrm{~d} x=\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{1}^{4}=\left[\frac{2}{3}(4)^{\frac{3}{2}}\right]-\left[\frac{2}{3}(1)^{\frac{3}{2}}\right]=\frac{14}{3}
$$

This area is rotated $360^{\circ}(=2 \pi)$ around the x-axis. Find the volume of the solid.

$$
V=\pi \int_{1}^{4} \sqrt{x}^{2} \mathrm{~d} x=\pi \int_{1}^{4} x \mathrm{~d} x=\pi\left[\frac{1}{2} x^{2}\right]_{1}^{4}=\pi\left(\left[\frac{1}{2}(4)^{2}\right]-\left[\frac{1}{2}(1)^{2}\right]\right)=\frac{15 \pi}{2}
$$

PROBABILITY

Table of contents \& cheatsheet

Definitions

Sample space the list of all possible outcomes.
Event the outcomes that meet the requirement.
Probability for event $A, P(A)=\frac{\text { Number of ways } A \text { can happen }}{\text { all outcomes in the sample space }}$.
Dependent events two events are dependent if the outcome of event A affects the outcome of event B so that the probability is changed.
Independent events two events are independent if the fact that A occurs does not affect the probability of B occurring.
Conditional probability the probability of A, given that B has happened: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.

8.2. Multiple events

Probabilities for successive events can be expressed through tree diagrams or a table of outcomes.

Table of outcomes		
	H	T
H	H,H	H, T
T	T, H	T, T

In general, if you are dealing with a question that asks for the probability of:

- one event and another, you multiply
- one event or another, you add
8.1. Single events

66

Mutually exclusive

$$
P(A \cup B)=P(A)+P(B)
$$

$$
P(A \cap B)=0
$$

Combined events

If independent: $P(A \cap B)=P(A) \times P(B)$.
Compliment, $A^{\prime} \quad$ where $P\left(A^{\prime}\right)=1-P(A)$
Exhaustive when everything in the sample space is contained in the events

8.3. Distributions

Distribution by a function. The domain of X must be defined.
Expected values $E(X)=\sum x P(X=x)$

Binomial distribution with parameters n and p it should be used for situations with only 2 outcomes and lots of trials

$$
P(X=x)=\binom{n}{r} p^{r}(1-p)^{n-r}
$$

where $\binom{n}{r}=\mathrm{nCr}=\frac{n!}{r!(n-r)!}, n=$ number of trials, $p=$ probability of success, $r=$ number of success.

On calculator:

- Binompdf(n,p,r) $P(X=r)$
- Binomcdf(n,p,r) $P(x \leq r)$
- Mean np
- Varience npq

On calculator: normal cdf (lower bound, upper bound, mean $(=\mu)$, standard deviation $(=\sigma)$)

8.1 Single events (Venn diagrams)

Probability for single events can be visually expressed through Venn diagraı

Sample space the list of all possible outcomes.
Event the outcomes that meet the requirement.
Probability for event A,
$P(A)=\frac{\text { Number of ways } A \text { can happen }}{\text { all outcomes in the sample space }}$
Here the shaded circle.

Imagine I have a fruit bowl containing 10 pieces of fruit: 6 apples and 4 bananas.
\square

I pick a piece of fruit. Below are some common situations with Venn diagrams.

Mutually exclusive

What is the probability of picking each fruit?

Events do not overlap

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B) \\
& P(A \cap B)=0
\end{aligned}
$$

$$
\begin{aligned}
& P(A)=\frac{6 \text { Apples }}{10 \text { pieces of fruit }}=0.6 \\
& P(B)=\frac{4 \text { Bananas }}{10 \text { pieces of fruit }}=0.4
\end{aligned}
$$

In independent events
$P(A \cap B)=$
$P(A) \times P(B)$.
It will often be stated in questions if events are independent.

These events are also exhaustive as there is nothing outside of the events (nothing in the sample space).

Combined events

Of the apples 2 are red, 2 are green and 2 are yellow.
What is the probability of picking a yellow apple?
The intersect is the area the events overlap.

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B)
$$

A : apples
B : yellow fruit
$P($ yellow apple $)=\frac{2 \text { apples }}{10 \text { pieces of fruit }}=0.2$

What is the probability of picking an apple or a yellow fruit?

The union is the area contain by both events.

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

When an event is exhaustive the probability of the union is 1.

A : apples
B : yellow fruit
Event is exhaustive so probability of union is 1 .

Compliment

What is the probability of not picking a yellow fruit?
Everything that is not in the stated event.

$$
P\left(A^{\prime}\right)=1-P(A)
$$

A : apples
B : yellow fruit

$$
P\left(B^{\prime}\right)=1-P(B)=1-0.6=0.4
$$

Conditional

What is the probability of picking an apple given I pick a yellow fruit?
The probability given that some condition is already in place.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

A : apples
B : yellow fruit

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.2}{(0.2+0.4)}=\frac{1}{3}
$$

You can think of this as using B as the sample space, or removing the non yellow apples from the fruit bowl before choosing.

8.2 Multiple events (tree Diagrams)

Questions involving dependent events will often involve elements that are drawn "without replacement".
Remember that the probabilities will be changing with each new set of branches.

Dependent events two events are dependent if the outcome of event A affects the outcome of event B so that the probability is changed.

Independent events two events are independent if the fact that A occurs does not affect the probability of B occurring.

Conditional probability the probability of A, given that B has happened:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

Probabilities for successive events can be expressed through tree diagrams or a table of outcomes. Often at standard level you will deal with two successive events, but both methods can be used for more. In general, if you are dealing with a question that asks for the probability of:

- one event and another, you multiply
- one event or another, you add

Tree diagrams

Two disks are randomly drawn without replacement from a stack of 4 red and 5 blue disks. Draw a tree diagram for all outcomes.

The probability of drawing two red disks can be found by multiplying both probabilities of getting red $\left(\frac{4}{9} \times \frac{3}{8}\right)$.

What is the probability to draw one red and one blue disk?
P (one red and one blue)

$$
\begin{array}{cccc}
(P(R) \text { and } P(B)) & \text { or } & (P(B) \text { and } P(R)) & \\
(P(R) \times P(B)) & & (P(B) \times P(R)) \\
\frac{20}{72} & + & \frac{20}{72} & =\frac{40}{72}=\frac{5}{9}
\end{array}
$$

It is common for conditional probability questions to relate to previous answers.

What is the probability to draw at least one red disk?
$P($ at least one red)
$P(R$ and $R)+P(B$ and $R)+P(R$ and $B)=1-P(B$ and $B)$

$$
\frac{12}{72}+\frac{20}{72}+\frac{20}{72}=1-\frac{20}{72} \quad=\frac{52}{72}=\frac{13}{18}
$$

What is the probability of picking a blue disc given that at least one red disk is picked?
$P($ blue disk | at least one red disk $)=\frac{P(\text { one red disk and one blue disk })}{P(\text { at least one red disk })}=\frac{\frac{5}{9}}{\frac{13}{18}}=\frac{10}{13}$

Tables of Outcomes

A table of outcomes has the possible outcomes for one event in the first row and the possible outcomes for another event it the first column. The table is then filled in with either the combination of these outcomes or the number of items (or probability) that fall into both events.

Table of outcomes for two flips of a fair coin

	H	T
H	H, H	H, T
T	T, H	T, T

Table of outcomes for three machine and the number of defective and non-defective items they make.

	Defective	Non-defective
Machine I	6	120
Machine II	4	80
Machine III	10	150

8.3 Distributions

Probability distribution a list of each possible value and their respective probabilities.

We can take any of the examples above and create a probability distibution from them. It is important to define the factor X for which the probability applies. Once tabulated we can use the distribution to find the expected value. It is best to think of this as the average value you would get if you repeated the action many times.

Probability distributions.

A fair coin is tossed twice, X is the number of heads obtained.

1. Draw a sample space diagram

	H	T
H	H, H	H, T
T	$\mathrm{~T}, \mathrm{H}$	T, T

2. Tabulate the probability distribution

x	0	1	2
$P(X=x)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

(The sum of $P(X=x)$ always equals 1)
3. Find the expected value of $X: E(X)$

$$
\begin{aligned}
E(X) & =\sum x P(X=x) \\
& =0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=1
\end{aligned}
$$

So if you toss a coin twice, you expect to get heads once.

8.3.1 Distribution by function

A probability distribution can also be given by a function.

The domain of X must be specified, as the sum of the probabilities must equal 1.

Probability distribution by function.

$P(X=x)=k\left(\frac{1}{3}\right)^{x-1}$ for $x=1,2,3$. Find constant k.

1. Use the fact that $\sum P(X=x)=1 \quad k\left(\frac{1}{3}\right)^{1-1}+k\left(\frac{1}{3}\right)^{2-1}+k\left(\frac{1}{3}\right)^{3-1}=1$
2. Simplify and solve for $k \quad k+\frac{1}{3} k+\frac{1}{9} k=\frac{13}{9} k=1$. So, $k=\frac{9}{13}$.

8.3.2 Binomial distribution

Binomial distribution with parameters n and p it should be used for situations with only 2 outcomes and lots of trials

$$
\begin{aligned}
\text { where }\binom{n}{r} & =\mathrm{nCr}=\frac{n!}{r!(n-r)!} \\
n & =\text { number of trials } \\
p & =\text { probability of success } \\
r & =\text { number of success }
\end{aligned}
$$

You can calculate values using binomial expansion from the algebra chapter. However binomial distribution questions are often found on calculator papers.

For questions asking for the probability of an exact outcome, $P(X=r)$, we use Binompdf on the GDC.

For questions asking for the probability of several consecutive values, $P(X \leq r)$, we use Binomcdf on the GDC.

Note that Binomcdf only calculates $P(X \leq r)$ or in words "at most the value of r ". Therefore you must remember to transform the function depending on the wording in the questions:

- "Less than r " $P(X<r)=P(X \leq r-1)$
- "More than r " $P(X>r)=1-P(X \leq r)$
- "At least r " $P(X \geq r)=1-P(X \leq r-1)$

8.3.3 Normal distribution

A normal distribution is one type of probability distribution which gives a bell-shape curve if all the values and their corresponding probabilities are plotted.

We can use normal distributions to find the probability of obtaining a certain value or a range of values. This can be found using the area under the curve; the area under the bell-curve between two x-values always corresponds to the probability for getting an x-value in this range. The total area under the normal distribution is always 1 ; this is because the total probability of getting any x-value adds up to 1 (or, in other words, you are 100% certain that your x-value will lie somewhere on the x-axis below the bell-curve).

Notation: $X \sim N\left(\mu, \sigma^{2}\right)$
Transform to standard $\mathbf{N}: Z=\frac{x-\mu}{\sigma}$
On calculator: normal cdf (lower bound, upper bound, mean $(=\mu)$, standard deviation $(=\sigma)$)

Even though you will be using your GDC to find probabilities for normal distributions, it's always very useful to draw a diagram to indicate for yourself (and the examiner) what area or x-value you are looking for.

To find a probability or percentage of a whole (the area under a normal distribution curve)

The weights of pears are normally distributed with mean $=110 \mathrm{~g}$ and standard deviation $=8 \mathrm{~g}$.
Find the percentage of pears that weigh between 100 g and 130 g

Sketch!

Indicate:

- The mean $=110 \mathrm{~g}$
- Lower bound $=100 \mathrm{~g}$
- Upper bound $=130 \mathrm{~g}$
- And shade the area you are looking to find.

Press menu , choose
5: Probability
5: Distributions
2: Normal Cdf

Enter lower and upper boundaries, mean (μ) and standard deviation (σ). For lower bound $=-\infty$, set lower: -1E99
For upper bound $=\infty$, set upper: 1E99

So 88.8% of the pears weigh between 100 g and 130 g .

To find an x-value when the probability is given

The weights of pears are normally distributed with mean $=110 \mathrm{~g}$ and standard deviation $=8 \mathrm{~g} .8 \%$ of the pears weigh more than m grams. Find m.

So $m=121$, which means that 8% of the pears weigh more than 121 g .

Finding mean and standard deviation of a normal distribution.

All nails longer than $2.4 \mathrm{~cm}(5.5 \%)$ and shorter than $1.8 \mathrm{~cm}(8 \%)$ are rejected. What is the mean and standard deviation length?
1.

Write down equations

$$
\begin{aligned}
& P(L<1.8)=0.08 \\
& P(L>2.4)=0.055
\end{aligned}
$$

2. Draw a sketch!

3. Write standardized equation of the form $P(Z<\ldots)$

$$
\begin{aligned}
& P\left(Z<\frac{1.8-\mu}{\sigma}\right)=0.08 \\
& P\left(Z>\frac{2.4-\mu}{\sigma}\right)=0.055 \\
& P\left(Z<\frac{2.4-\mu}{\sigma}\right)=1-0.055=0.945
\end{aligned}
$$

4. Use "inVnorm" on calculator
inVnorm $(0.08,0,1)=-1.4051$
inVnorm $(0.945,0,1)=1.5982$
5. Equate and solve

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{1.8-\mu}{\sigma}=-1.4051 \\
\frac{2.4-\mu}{\sigma}=1.5982
\end{array}\right. \\
& \left\{\begin{array}{l}
\mu=2.08 \\
\sigma=0.200
\end{array}\right.
\end{aligned}
$$

Table of contents \& cheatsheet

Definitions

Population the entire group from which statistical data is drawn (and which the statistics obtained represent).
Sample the observations actually selected from the population for a statistical test.
Random Sample a sample that is selected from the population with no bias or criteria; the observations are made at random.
Discrete finite or countable number of possible values (e.g. money, number of people)

Continuous infinite amount of increments (e.g. time, weight)

Note: continuous data can be presented as discrete data, e.g. if you round time to the nearest minute or weight to the nearest kilogram.

9.1. Descriptive statistics

For 1 variable data with frequency.
On GDC, use 1-Var Stats.
Mean the average value,

$$
\bar{x}=\frac{\text { the sum of the data }}{\text { no. of data points }}
$$

Mode the value that occurs most often
Median when the data set is ordered low to high and the number of data points is:

- odd, then the median is the middle value;
- even, then the median is the average of the two middle values.
Range largest x-value - smallest x-value
Variance $\quad \sigma^{2}=\frac{\sum f\left(x-\bar{x}^{2}\right)}{n}$
Standard deviation $\sigma=\sqrt{\text { variance }}$
calculator only calculator only

Grouped data: data presented as an interval.
Use the midpoint as the x-value in all calculations.
$\mathrm{Q}_{1} \quad$ first quartile $=25^{\text {th }}$ percentile.
$\mathrm{Q}_{2} \quad$ median $=50^{\text {th }}$ percentile
$Q_{3} \quad$ third quartile $=75^{\text {th }}$ percentile
$\mathrm{Q}_{3}-\mathrm{Q}_{1}$
interquartile range $(\mathrm{IQR})=$ middle 50 percent

9.2. Statistical graphs

Frequency the number of times an event occurs in an experiment
Cumulative frequency the sum of the frequency for a particular class and the frequencies for all the classes below it

Histogram

Cumulative frequency

Box and whisker plot

9.3. Bi-variate analysis

For analysis of data with two variables.
On GDC use LinReg ($a x+b$).
Regression Line ($r=a x+b$)
Can be used to interpolate unknown data.

Interpretation of r-values

Scatter diagrams

Perfect positive

The correlation between the two sets of data. Can be positive or negative.

| r-value \quad correlation |
| :---: | :---: |
| $0.00 \leq\|r\| \leq 0.25$ very weak |
| $0.25 \leq\|r\| \leq 0.50 \quad$ weak |
| $0.50 \leq\|r\| \leq 0.75$ moderate |
| $0.75 \leq\|r\| \leq 1.00 \quad$ strong |

Weak negative

9.1 Descriptive statistics

The mean, mode and median, are all ways of measuring "averages". Depending on the distribution of the data, the values for the mean, mode and median can differ slightly or a lot. Therefore, the mean, mode and median are all useful for understanding your data set.

Example data set: $6,3,6,13,7,7$ in a table: | x | 3 | 6 | 7 | 13 |
| :--- | :--- | :--- | :---: | :---: |
| frequency | 1 | 2 | 2 | 1 |

Mean the average value, $\bar{x}=\frac{\text { the sum of the data }}{\text { no. of data points }}=\frac{\sum x}{n}=\frac{\sum f x}{\sum f}$
e.g. $\bar{x}=\frac{3+6+6+7+7+13}{6}=\frac{1 \cdot 3+2 \cdot 6+2 \cdot 7+1 \cdot 13}{1+2+2+1}=7$

Mode the value that occurs most often (highest frequency)
e.g. The example data set has 2 modes: 6 and 7

Median the middle value when the data set is ordered low to high. Even number of values: the median is the average of the two middle values. Find for larger values as $n+\frac{1}{2}$.
e.g. data set from low to high: $3,6,6,7,7,13$
median $=\frac{6+7}{2}=6.5$

Range largest x-value - smallest x-value
e.g. range $=13-3=10$

Variance $\quad \sigma^{2}=\frac{\sum f\left(x-\bar{x}^{2}\right)}{n}$ calculator only

Standard deviation $\sigma=\sqrt{\text { variance }}$ calculator only

Note on grouped data: data presented as an interval; e.g. $10-20 \mathrm{~cm}$.

- Use the midpoint as the x-value in all calculations. So for $10-20 \mathrm{~cm}$ use 15 cm .
- For $10-20 \mathrm{~cm}, 10$ is the lower boundary, 20 is the upper boundary and the width is $20-10=10$.

Adding a constant to all the values in a data set or multiplying the entire data set by a constant influences the mean and standard deviation values in the following way:

Table 9.1: Adding or multiplying by a constant

	adding constant k	multiplying by k
mean	$\bar{x}+k$	$k \times \bar{x}$
standard deviation	σ	$k \times \sigma$

Snow depth is measured in centimeters:
$30,75,125,55,60,75,65,65,45,120,70,110$.
Find the range, the median, the lower quartile, the upper quartile and the interquartile range.

First always rearrange data into ascending order: $30,45,55,60,65,65,70,75,75,110,120,125$

1. The range:

$$
125-30=95 \mathrm{~cm}
$$

2. The median: there are 12 values so the median is between the $6^{\text {th }}$ and $7^{\text {th }}$ value.

$$
\frac{65+70}{2}=67.5 \mathrm{~cm}
$$

3. The lower quartile: there are 12 values so the lower quartile is between the $3^{\text {rd }}$ and $4^{\text {th }}$ value.

$$
\frac{55+60}{2}=57.5 \mathrm{~cm}
$$

4. The upper quartile: there are 12 values so the lower quartile is between the $9^{\text {th }}$ and $10^{\text {th }}$ value.

$$
\frac{75+110}{2}=92.5 \mathrm{~cm}
$$

5. The IQR

$$
92.5-57.5=35 \mathrm{~cm}
$$

9.2 Statistical graphs

Frequency the number of times an event occurs in an experiment

Cumulative frequency the sum of the frequency for a particular class and the frequencies for all the classes below it

Age	17	18	19	20	21
No. of students	21	45	93	61	20
Cumulative freq.	21	66	159	220	240

A histogram is used to display the frequency for a specific condition. The frequencies (here: \# of students) are displayed on the y-axis, and the different classes of the sample (here: age) are displayed on the x-axis. As such, the differences in frequency between the different classes assumed in the sample can easily be compared.

The cumulative frequency graph is used to display the development of the frequencies as the classes of the event increase. The graph is plotted by using the sum of all frequencies for a particular class, added to the frequencies for all the classes below it. The classes of the event (age) are displayed on the x-axis, and the frequency is displayed on the y-axis. The cumulative frequency graph always goes upwards, because the cumulative frequency increases as you include more classes.

Box and whisker plots neatly summarize the distribution of the data. It gives information about the range, the median and the quartiles of the data. The first and third quartiles are at the ends of the box, the median is indicated with a vertical line in the interior of the box, and the maximum and minimum points are at the ends of the whiskers.

Outliers will be any points lower than $\mathrm{Q}_{1}-1.5 \times \mathrm{IQR}$ and larger than $\mathrm{Q}_{3}+1.5 \times \mathrm{IQR} \quad(\mathrm{IQR}=$ interquartile range $)$

To identify the value of $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3}, it is easiest to use the cumulative frequency graph. First, determine the percentage of the quartile in question. Second, divide the total cumulative frequency of the graph (i.e. the total sample size) by 100 and multiply by the corresponding percentage. Then, you will have found the frequency $(y$-value) at which 25% for $\mathrm{Q}_{1} / 50 \%$ for $\mathrm{Q}_{2} / 75 \%$ for Q_{3} of the sample is represented. To find the x-value, find the corresponding x-value for the previously identified y-value.

Using the histogram, create a cumulative frequency graph and use it to construct a box and whisker diagram.

Write out the table for frequency and cumulative frequency.

Frequency of fish	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$	$100-110$	$110-120$
Length of fish	2	3	5	7	11	5	6	9	1	1
Cumulative f.	2	5	10	17	28	33	39	48	49	50

Plot on cumulative frequency chart. Remember to use the midpoint of the date, e.g., 25 for 20-30.

Use graph to find Q_{1}, Q_{2} and Q_{3}.

$\mathrm{Q}_{1} 25 \%$ of $50=12.5 \rightarrow 48$
$\mathrm{Q}_{2} 50 \%$ of $50=25 \rightarrow 62$
$\mathrm{Q}_{3} 75 \%$ of $50=37.5 \rightarrow 83$

Plot box and whiskers.

GDC

To find mean, standard deviation and quartiles etc.

For the data used in the previous example showing the ages of students

Press on , go to
Lists and Spreadsheets.
Enter x-values in L1 and, if applicable, frequencies in L2

Enter Num of lists: 1.
Press

Press menu , choose
4: Statistics
1: Stat Calculations

Enter names of columns you used to enter your x-list and frequency list and column where you would like the solutions to appear: $\mathrm{a}[\mathrm{]}, \mathrm{~b}[\mathrm{]}$ and $\mathrm{c}[\mathrm{]}$. Press $\xrightarrow{\overline{\mathrm{OK}}}$

1: One-Variable Statistics

mean $=19.06$;
standard deviation $=1.06$ etc.

9.3 Bi-variate analysis

Bi-variate analysis is a method of assessing how two (bi) sets of data (variables) correlate to one another. An example of such data is the growth of a plant over 8 weeks.

Week x	0	1	2	3	4	5	6	7	8
Height (cm) y	23.5	25	26.5	27	28.5	31.5	34.5	36	37.5

Using your GDC we can quickly work out the regression line and correlation coefficient (r). Before you start, make sure STAT DIAGNOSTICS is turned on (can be found by pressing MODE).

Regression line

The regression line is a linear mathematical model describing the relationship between the two measured variables. This can be used to find an estimated value for points for which we do not have actual data. For example the height of the plant at 3.5 weeks.

Height of plant at 3.5 weeks. $1.83(3.5)+22.7=29.1 \mathrm{~cm}$.

However one has to be careful when extrapolating (going further than the actual data points) as it is open to greater uncertainty. In this example it is highly likely that the plant will eventually stop growing at a linear rate and so the model should not be used after 8 weeks.

Correlation coefficient (r)

Pearson's correlation r is a measure to assess the linear correlation between two variables, where 1 is total positive correlation, 0 is no correlation, and -1 is total negative correlation.

When commenting on Pearson's correlation, one has to include two things:

1. Whether it is Positive or Negative
2. The strength of the correlation.

r-value	$0 \leq\|r\| \leq 0.25$	$0.25 \leq\|r\| \leq 0.50$	$0.50 \leq\|r\| \leq 0.75$	$0.75 \leq\|r\| \leq 1$
correlation	very weak	weak	moderate	strong

Scatter diagrams

Even if we do not know the r-value, it is possible to estimate correlation by looking at the scatter plot of data.
Perfect positive
correlation
$r=1$

$$
r=1
$$

No correlation
$r=0$

$$
\begin{gathered}
\text { Weak negative } \\
\text { correlation } \\
-0.5<r<-0.25
\end{gathered}
$$

However it is important to remember this maxim:
Correlation does not mean causation.

Just because two variables have a relationship it does not mean they cause one another. For example ice cream sales show a strong correlation to the number deaths by drowning. Therefore we might falsely state ice cream consumption causes drowning. But it is more plausible that both are caused by warm weather leading to more desire for ice cream and swimming. They are just correlated.

ACADEMY

ACADEMY

